Zobrazeno 1 - 10
of 2 342
pro vyhledávání: '"HOFFMAN, ERIC P."'
Autor:
Wysoczanski, Artur, Ettehadi, Nabil, Arabshahi, Soroush, Sun, Yifei, Stukovsky, Karen Hinkley, Watson, Karol E., Han, MeiLan K., Michos, Erin D, Comellas, Alejandro P., Hoffman, Eric A., Laine, Andrew F., Barr, R. Graham, Angelini, Elsa D.
Pulmonary emphysema, the progressive, irreversible loss of lung tissue, is conventionally categorized into three subtypes identifiable on pathology and on lung computed tomography (CT) images. Recent work has led to the unsupervised learning of ten s
Externí odkaz:
http://arxiv.org/abs/2403.00257
Autor:
Naik, Sneha N., Angelini, Elsa D., Barr, R. Graham, Allen, Norrina, Bertoni, Alain, Hoffman, Eric A., Manichaikul, Ani, Pankow, Jim, Post, Wendy, Sun, Yifei, Watson, Karol, Smith, Benjamin M., Laine, Andrew F.
High-resolution full lung CT scans now enable the detailed segmentation of airway trees up to the 6th branching generation. The airway binary masks display very complex tree structures that may encode biological information relevant to disease risk a
Externí odkaz:
http://arxiv.org/abs/2402.18615
Autor:
Zhang, Xuzhe, Angelini, Elsa D., Hoffman, Eric A., Watson, Karol E., Smith, Benjamin M., Barr, R. Graham, Laine, Andrew F.
Robust quantification of pulmonary emphysema on computed tomography (CT) remains challenging for large-scale research studies that involve scans from different scanner types and for translation to clinical scans. Existing studies have explored severa
Externí odkaz:
http://arxiv.org/abs/2402.18383
Machine Learning (ML) has recently been a skyrocketing field in Computer Science. As computer hardware engineers, we are enthusiastic about hardware implementations of popular software ML architectures to optimize their performance, reliability, and
Externí odkaz:
http://arxiv.org/abs/2306.13557
Autor:
Zillikens, M. Carola, Demissie, Serkalem, Hsu, Yi-Hsiang, Yerges-Armstrong, Laura M., Chou, Wen-Chi, Stolk, Lisette, Livshits, Gregory, Broer, Linda, Johnson, Toby, Koller, Daniel L., Kutalik, Zoltán, Luan, Jian’an, Malkin, Ida, Ried, Janina S., Smith, Albert V., Thorleifsson, Gudmar, Vandenput, Liesbeth, Hua Zhao, Jing, Zhang, Weihua, Aghdassi, Ali, Åkesson, Kristina, Amin, Najaf, Baier, Leslie J., Barroso, Inês, Bennett, David A., Bertram, Lars, Biffar, Rainer, Bochud, Murielle, Boehnke, Michael, Borecki, Ingrid B., Buchman, Aron S., Byberg, Liisa, Campbell, Harry, Campos Obanda, Natalia, Cauley, Jane A., Cawthon, Peggy M., Cederberg, Henna, Chen, Zhao, Cho, Nam H., Jin Choi, Hyung, Claussnitzer, Melina, Collins, Francis, Cummings, Steven R., De Jager, Philip L., Demuth, Ilja, Dhonukshe-Rutten, Rosalie A. M., Diatchenko, Luda, Eiriksdottir, Gudny, Enneman, Anke W., Erdos, Mike, Eriksson, Johan G., Eriksson, Joel, Estrada, Karol, Evans, Daniel S., Feitosa, Mary F., Fu, Mao, Garcia, Melissa, Gieger, Christian, Girke, Thomas, Glazer, Nicole L., Grallert, Harald, Grewal, Jagvir, Han, Bok-Ghee, Hanson, Robert L., Hayward, Caroline, Hofman, Albert, Hoffman, Eric P., Homuth, Georg, Hsueh, Wen-Chi, Hubal, Monica J., Hubbard, Alan, Huffman, Kim M., Husted, Lise B., Illig, Thomas, Ingelsson, Erik, Ittermann, Till, Jansson, John-Olov, Jordan, Joanne M., Jula, Antti, Karlsson, Magnus, Khaw, Kay-Tee, Kilpeläinen, Tuomas O., Klopp, Norman, Kloth, Jacqueline S. L., Koistinen, Heikki A., Kraus, William E., Kritchevsky, Stephen, Kuulasmaa, Teemu, Kuusisto, Johanna, Laakso, Markku, Lahti, Jari, Lang, Thomas, Langdahl, Bente L., Launer, Lenore J., Lee, Jong-Young, Lerch, Markus M., Lewis, Joshua R., Lind, Lars, Lindgren, Cecilia, Liu, Yongmei, Liu, Tian, Liu, Youfang, Ljunggren, Östen, Lorentzon, Mattias, Luben, Robert N., Maixner, William, McGuigan, Fiona E., Medina-Gomez, Carolina, Meitinger, Thomas, Melhus, Håkan, Mellström, Dan, Melov, Simon, Michaëlsson, Karl, Mitchell, Braxton D., Morris, Andrew P., Mosekilde, Leif, Newman, Anne, Nielson, Carrie M., O’Connell, Jeffrey R., Oostra, Ben A., Orwoll, Eric S., Palotie, Aarno, Parker, Stephan, Peacock, Munro, Perola, Markus, Peters, Annette, Polasek, Ozren, Prince, Richard L., Räikkönen, Katri, Ralston, Stuart H., Ripatti, Samuli, Robbins, John A., Rotter, Jerome I., Rudan, Igor, Salomaa, Veikko, Satterfield, Suzanne, Schadt, Eric E., Schipf, Sabine, Scott, Laura, Sehmi, Joban, Shen, Jian, Soo Shin, Chan, Sigurdsson, Gunnar, Smith, Shad, Soranzo, Nicole, Stančáková, Alena, Steinhagen-Thiessen, Elisabeth, Streeten, Elizabeth A., Styrkarsdottir, Unnur, Swart, Karin M. A., Tan, Sian-Tsung, Tarnopolsky, Mark A., Thompson, Patricia, Thomson, Cynthia A., Thorsteinsdottir, Unnur, Tikkanen, Emmi, Tranah, Gregory J., Tuomilehto, Jaakko, van Schoor, Natasja M., Verma, Arjun, Vollenweider, Peter, Völzke, Henry, Wactawski-Wende, Jean, Walker, Mark, Weedon, Michael N., Welch, Ryan, Wichmann, H.-Erich, Widen, Elisabeth, Williams, Frances M. K., Wilson, James F., Wright, Nicole C., Xie, Weijia, Yu, Lei, Zhou, Yanhua, Chambers, John C., Döring, Angela, van Duijn, Cornelia M., Econs, Michael J., Gudnason, Vilmundur, Kooner, Jaspal S., Psaty, Bruce M., Spector, Timothy D., Stefansson, Kari, Rivadeneira, Fernando, Uitterlinden, André G., Wareham, Nicholas J., Ossowski, Vicky, Waterworth, Dawn, Loos, Ruth J. F., Karasik, David, Harris, Tamara B., Ohlsson, Claes, Kiel, Douglas P.
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 2
Externí odkaz:
http://hdl.handle.net/10150/625337
http://arizona.openrepository.com/arizona/handle/10150/625337
http://arizona.openrepository.com/arizona/handle/10150/625337
Autor:
Chaudhary, Muhammad F. A., Gerard, Sarah E., Christensen, Gary E., Cooper, Christopher B., Schroeder, Joyce D., Hoffman, Eric A., Reinhardt, Joseph M.
Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expirat
Externí odkaz:
http://arxiv.org/abs/2210.02625
Autor:
Chaudhary, Muhammad F. A., Gerard, Sarah E., Wang, Di, Christensen, Gary E., Cooper, Christopher B., Schroeder, Joyce D., Hoffman, Eric A., Reinhardt, Joseph M.
Local tissue expansion of the lungs is typically derived by registering computed tomography (CT) scans acquired at multiple lung volumes. However, acquiring multiple scans incurs increased radiation dose, time, and cost, and may not be possible in ma
Externí odkaz:
http://arxiv.org/abs/2110.07878
Autor:
He, Xinzi, Guo, Jia, Zhang, Xuzhe, Bi, Hanwen, Gerard, Sarah, Kaczka, David, Motahari, Amin, Hoffman, Eric, Reinhardt, Joseph, Barr, R. Graham, Angelini, Elsa, Laine, Andrew
Unsupervised learning-based medical image registration approaches have witnessed rapid development in recent years. We propose to revisit a commonly ignored while simple and well-established principle: recursive refinement of deformation vector field
Externí odkaz:
http://arxiv.org/abs/2106.07608
Autor:
Roy, Runia, Dang, Utkarsh J., Huffman, Kim M., Alayi, Tchilabalo, Hathout, Yetrib, Nagaraju, Kanneboyina, Visich, Paul S., Hoffman, Eric P.
Publikováno v:
In Psychoneuroendocrinology January 2024 159
Autor:
Gerard, Sarah E., Herrmann, Jacob, Xin, Yi, Martin, Kevin T., Rezoagli, Emanuele, Ippolito, Davide, Bellani, Giacomo, Cereda, Maurizio, Guo, Junfeng, Hoffman, Eric A., Kaczka, David W., Reinhardt, Joseph M.
Publikováno v:
Sci Rep 11, 1455 (2021)
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is pro
Externí odkaz:
http://arxiv.org/abs/2010.08582