Zobrazeno 1 - 10
of 277
pro vyhledávání: '"HENGARTNER, NICOLAS"'
Autor:
Foucart, Simon, Hengartner, Nicolas
Inspired by multi-fidelity methods in computer simulations, this article introduces procedures to design surrogates for the input/output relationship of a high-fidelity code. These surrogates should be learned from runs of both the high-fidelity and
Externí odkaz:
http://arxiv.org/abs/2406.14418
Autor:
Sorokin, Aleksei G., Pachalieva, Aleksandra, O'Malley, Daniel, Hyman, James M., Hickernell, Fred J., Hengartner, Nicolas W.
Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solut
Externí odkaz:
http://arxiv.org/abs/2310.13765
Autor:
Trejo, Imelda, Hengartner, Nicolas
Fitting Susceptible-Infected-Recovered (SIR) models to incidence data is problematic when not all infected individuals are reported. Assuming an underlying SIR model with general but known distribution for the time to recovery, this paper derives the
Externí odkaz:
http://arxiv.org/abs/2012.05294
Autor:
Dhaubhadel, Sayera, Mohd-Yusof, Jamaludin, Ganguly, Kumkum, Chennupati, Gopinath, Thulasidasan, Sunil, Hengartner, Nicolas W., Mumphrey, Brent J., Durbin, Eric B., Doherty, Jennifer A., Lemieux, Mireille, Schaefferkoetter, Noah, Tourassi, Georgia, Coyle, Linda, Penberthy, Lynne, McMahon, Benjamin H., Bhattacharya, Tanmoy
Safe deployment of deep learning systems in critical real world applications requires models to make very few mistakes, and only under predictable circumstances. In this work, we address this problem using an abstaining classifier that is tuned to ha
Externí odkaz:
http://arxiv.org/abs/2009.05094
Using a sparsity inducing penalty in artificial neural networks (ANNs) avoids over-fitting, especially in situations where noise is high and the training set is small in comparison to the number of features. For linear models, such an approach provab
Externí odkaz:
http://arxiv.org/abs/2006.04041
Autor:
Sanche, Steven, Lin, Yen Ting, Xu, Chonggang, Romero-Severson, Ethan, Hengartner, Nicolas W., Ke, Ruian
The novel coronavirus (2019-nCoV) is a recently emerged human pathogen that has spread widely since January 2020. Initially, the basic reproductive number, R0, was estimated to be 2.2 to 2.7. Here we provide a new estimate of this quantity. We collec
Externí odkaz:
http://arxiv.org/abs/2002.03268
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mansbach, Rachael A., Leus, Inga V., Mehla, Jitender, Lopez, Cesar A., Walker, John K., Rybenkov, Valentin V., Hengartner, Nicolas W., Zgurskaya, Helen I., Gnanakaran, S.
Gram-negative bacteria are a serious health concern due to the strong multidrug resistance that they display, partly due to the presence of a permeability barrier comprising two membranes with active efflux. New approaches are urgently needed to desi
Externí odkaz:
http://arxiv.org/abs/1907.13459
It is a challenge to obtain an accurate model of the state-to-state dynamics of a complex biological system from molecular dynamics (MD) simulations. In recent years, Markov State Models have gained immense popularity for computing state-to-state dyn
Externí odkaz:
http://arxiv.org/abs/1905.09975
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.