Zobrazeno 1 - 10
of 35
pro vyhledávání: '"HATHOUT, FOUZI"'
In this study, we define the unit hyper-dual sphere $S_{\mathbb{D} _{2}}$ in hyper-dual vectors $\mathbb{D}_{2}$ and we give E-Study map version in $\mathbb{D}_{2}$ which prove that $S_{\mathbb{D} _{2}}^{2} $ is isomorphism to the tangent bundle $TS_
Externí odkaz:
http://arxiv.org/abs/2412.01727
Autor:
Derkaoui, Khadidja, Hathout, Fouzi
Publikováno v:
International Journal of Geometric Methods in Modern Physics (2021) 2150135
In this paper, We present the geometry three dimensional Heisenberg group (H_3,g) and its geodesics curves. After, we study the Killing magnetic curves and some geodesic Killing magnetic curves with its explicit formulas for such curves.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/2103.11234
Autor:
Hathout, Fouzi
In this paper, we introduce a new class of curves \alpha called a f-rectifying curves, which its f-position vector defined by {\alpha}_{f}(s)=\int f(s)T(s)ds always lie in the rectifying plane of \alpha, where f is an integrable function and T is the
Externí odkaz:
http://arxiv.org/abs/1810.08993
Publikováno v:
Ukrainian Mathematical Journal (2021)
In this paper, Legendre curves on unit tangent bundle are given using rotation minimizing (RM) vector fields. Ruled surfaces corresponding to these curves are represented. Singularities of these ruled surfaces are also analyzed and classifed.
Co
Co
Externí odkaz:
http://arxiv.org/abs/1706.05321
Let $(\mathbb{M}_{1}^{2},g)$ be a Minkowski surface and $(T_1\mathbb{M}_1^2, g_1)$ its unit tangent bundle endowed with the pseudo-Riemannian induced Sasaki metric. We extend in this paper the study of the N-Legendre and N-slant curves which the inne
Externí odkaz:
http://arxiv.org/abs/1603.09259
Autor:
DIDA, Hamou Mohammed, HATHOUT, Fouzi
Publikováno v:
General Letters in Mathematics (GLM); Sep2024, Vol. 14 Issue 3, p63-74, 12p
Autor:
Dida, Mohamed H.1, Hathout, Fouzi1 f.hathout@gmail.com
Publikováno v:
Facta Universitatis, Series: Mathematics & Informatics. 2022, Vol. 37 Issue 5, p975-991. 17p.
Autor:
HATHOUT, FOUZI1 f.hathout@gmail.com
Publikováno v:
International Journal of Geometry. Oct2022, Vol. 11 Issue 4, p65-74. 10p.
Autor:
BEKAR, MURAT1 muratbekar@gazi.edu.tr, HATHOUT, FOUZI2 f.hathout@gmail.com, YAYLI, YUSUF3 yayli@science.ankara.edu.tr
Publikováno v:
International Journal of Geometry. Oct2022, Vol. 11 Issue 4, p20-33. 14p.
Autor:
BEKAR, MURAT1 murat-bekar@hotmail.com, HATHOUT, FOUZI2 f.hathout@gmail.com, YAYLI, YUSUF3 yayli@science.ankara.edu.tr
Publikováno v:
Journal of Science & Arts. Jun2022, Vol. 22 Issue 2, p413-438. 26p.