Zobrazeno 1 - 10
of 50
pro vyhledávání: '"HARIRI, PARISA"'
Autor:
Millwood, Iona Y *, *, Im, Pek Kei *, Bennett, Derrick, Hariri, Parisa, Yang, Ling, Du, Huaidong, Kartsonaki, Christiana, Lin, Kuang, Yu, Canqing, Chen, Yiping, Sun, Dianjianyi, Zhang, Ningmei, Avery, Daniel, Schmidt, Dan, Pei, Pei, Chen, Junshi, Clarke, Robert, Lv, Jun, Peto, Richard, Walters, Robin G, Li, Liming, Chen, Zhengming
Publikováno v:
In The Lancet Public Health December 2023 8(12):e956-e967
An ancient optics problem of Ptolemy, studied later by Alhazen, is discussed. This problem deals with reflection of light in spherical mirrors. Mathematically this reduces to the solution of a quartic equation, which we solve and analyze using a symb
Externí odkaz:
http://arxiv.org/abs/1706.06924
We study local convexity properties of the triangular ratio metric balls in proper subdomains of the real coordinate space. We also study inclusion properties of the visual angle metric balls and related hyperbolic type metric balls in the complement
Externí odkaz:
http://arxiv.org/abs/1511.05673
Publikováno v:
Complex Variables and Elliptic Equations, 2016 VOL. 61, NO. 11, 1464--1480
The connection between several hyperbolic type metrics is studied in subdomains of the Euclidean space. In particular, a new metric is introduced and compared to the distance ratio metric.
Comment: 17 pages, 4 figures
Comment: 17 pages, 4 figures
Externí odkaz:
http://arxiv.org/abs/1504.04487
Publikováno v:
Publ. Math. Debrecen 90/3-4 (2017), 269-285
Some sharp inequalities between the triangular ratio metric and the Cassinian metric are proved in the unit ball.
Comment: 15 pages, 2 figures
Comment: 15 pages, 2 figures
Externí odkaz:
http://arxiv.org/abs/1504.01923
Publikováno v:
Rocky Mountain J. Math. Volume 47, Number 4 (2017), 1121-1148
Let $G \subsetneq \mathbb{R}^n$ be a domain and let $d_1$ and $d_2$ be two metrics on $G$. We compare the geometries defined by the two metrics to each other for several pairs of metrics. The metrics we study include the distance ratio metric, the tr
Externí odkaz:
http://arxiv.org/abs/1411.2747
Publikováno v:
Comput. Methods Funct. Theory (2016) 16: 187
We show that the visual angle metric and the triangular ratio metric are comparable in convex domains. We also find the extremal points for the visual angle metric in the half space and in the ball by use of a construction based on hyperbolic geometr
Externí odkaz:
http://arxiv.org/abs/1410.5943
Publikováno v:
Annales Academi{\ae} Scientiarum Fennic{\ae} Mathematica Volumen 40, 2015, 683-709
The triangular ratio metric is studied in subdomains of the complex plane and Euclidean $n$-space. Various inequalities are proven for it. The main results deal with the behavior of this metric under quasiconformal maps. We also study the smoothness
Externí odkaz:
http://arxiv.org/abs/1403.6582
Publikováno v:
The Rocky Mountain Journal of Mathematics, 2017 Jan 01. 47(4), 1121-1148.
Externí odkaz:
https://www.jstor.org/stable/26414324