Zobrazeno 1 - 10
of 128
pro vyhledávání: '"HANTOUTE, ABDERRAHIM"'
This paper deals with the regularization of the sum of functions defined on a locally convex spaces through their closed-convex hulls in the bidual space. Different conditions guaranteeing that the closed-convex hull of the sum is the sum of the corr
Externí odkaz:
http://arxiv.org/abs/2410.01436
In the paper, we extend the widely used in optimization theory decoupling techniques to infinite collections of functions. Extended concepts of uniform lower semicontinuity and firm uniform lower semicontinuity as well as the new concepts of weak uni
Externí odkaz:
http://arxiv.org/abs/2409.00573
In this paper we develop general formulas for the subdifferential of the pointwise supremum of convex functions, which cover and unify both the compact continuous and the non-compact non-continuous settings. From the non-continuous to the continuous
Externí odkaz:
http://arxiv.org/abs/2004.01173
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A quasi-equilibrium problem is an equilibrium problem where the constraint set does depend on the reference point. It generalizes important problems such as quasi-variational inequalities and generalized Nash equilibrium problems. We study the existe
Externí odkaz:
http://arxiv.org/abs/1901.09116
Characterizations of the subdifferential of convex integral functions under qualification conditions
This work provides formulae for the $\epsilon$-subdifferential of integral functions in the framework of complete $\sigma$-finite measure spaces and locally convex spaces. In this work we present here new formulae for this $\epsilon$-subdifferential
Externí odkaz:
http://arxiv.org/abs/1804.10705
We provide formulae for the $\varepsilon$-subdifferential of the integral function $ I_f(x):=\int_T f(t,x) d\mu(t), $ where the integrand $f:T\times X \to [-\infty,+\infty]$ is measurable in $(t,x)$ and convex in $x$. The state variable lies in a loc
Externí odkaz:
http://arxiv.org/abs/1804.00621
This work concerns the study of the subdifferential of the integral functional $$ E_f(x)=\int_{T} f(t,x)d\mu(t), $$ where $f$ is a (not necessarily convex) normal integrand, $({T},\mathcal{A},\mu)$ is a $\sigma$-finite measure space, while the decisi
Externí odkaz:
http://arxiv.org/abs/1803.05521
We give criteria for weak and strong invariant closed sets for differential inclusions given in $\mathbb{R}^{n}$ and governed by Lipschitz Cusco perturbations of maximal monotone operators. Correspondingly, we provide different characterizations for
Externí odkaz:
http://arxiv.org/abs/1801.06366
Autor:
Hantoute, Abderrahim, Svensson, Anton
The (delta-) normal cone to an arbitrary intersection of sublevel sets of proper, lower semicontinuous, and convex functions is characterized, using either epsilon-subdifferentials at the nominal point or exact subdifferentials at nearby points. Our
Externí odkaz:
http://arxiv.org/abs/1710.10187