Zobrazeno 1 - 10
of 35
pro vyhledávání: '"HANNUSCH, CAROLIN"'
Autor:
Hannusch, Carolin, Filippone, Giuseppe
We give a decoding algorithm for a class of error-correcting codes, which can be used in the DHH-cryptosystem, which is a candidate for post-quantum cryptography, since it is of McEliece type. Furthermore, we implement the encryption and decryption a
Externí odkaz:
http://arxiv.org/abs/2303.09820
Autor:
Hannusch, Carolin, Major, S. Roland
In this paper, we introduce and investigate the neighborhood of binary self-dual codes. We prove that there is no better Type I code than the best Type II code of the same length. Further, we give some new necessary conditions for the existence of a
Externí odkaz:
http://arxiv.org/abs/2206.05588
Autor:
Hannusch, Carolin, Major, Roland S.
A self-dual binary linear code is called Type I code if it has singly-even codewords, i.e.~it has codewords with weight divisible by $2.$ The purpose of this paper is to investigate interesting properties of Type I codes of different lengths. Further
Externí odkaz:
http://arxiv.org/abs/2110.09244
Autor:
Hannusch, Carolin, Pethő, Attila
Let $A_{\varphi}$ denote the matrix of rotation with angle $\varphi$ of the Euclidean plane, FLOOR the function, which rounds a real point to the nearest lattice point down on the left and ROUND the function for rounding off a vector to the nearest n
Externí odkaz:
http://arxiv.org/abs/2109.01828
Autor:
Hannusch, Carolin
We show that for each reduced odd latin square of even order there exists at least one map such that its image is a reduced even latin square of the same order. We prove that this map is injective. As a consequence, we can show that the number of eve
Externí odkaz:
http://arxiv.org/abs/2012.15257
For an (imaginary) hyperelliptic curve $\mathcal{H}$ of genus $g$, we determine a basis of the Riemann-Roch space $\mathcal{L}(D)$, where $D$ is a divisor with positive degree $n$, linearly equivalent to $P_1+\cdots+ P_j+(n-j)\Omega$, with $0 \le j \
Externí odkaz:
http://arxiv.org/abs/2012.08870
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that the largest character degree of an alternating group $A_n$ with $n\geq 5$ can be bounded in terms of smaller degrees in the sense that \[ b(A_n)^2<\sum_{\psi\in\textrm{Irr}(A_n),\,\psi(1)< b(A_n)}\psi(1)^2, \] where $\textrm{Irr}(A_n)$ a
Externí odkaz:
http://arxiv.org/abs/1410.3055
Autor:
Hannusch, Carolin
Publikováno v:
In Discrete Mathematics May 2017 340(5):957-962
Publikováno v:
Proceedings of the American Mathematical Society, 2016 May 01. 144(5), 1947-1960.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.144.5.1947