Zobrazeno 1 - 4
of 4
pro vyhledávání: '"HANNAH BERGNER"'
Autor:
HANNAH BERGNER, PATRICK GRAF
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
We prove the Lipman–Zariski conjecture for complex surface singularities with $p_{g}-g-b\leqslant 2$. Here $p_{g}$ is the geometric genus, $g$ is the sum of the genera of exceptional curves and $b$ is the first Betti number of the dual graph. This
Externí odkaz:
https://doaj.org/article/4d619ffbae944f2caf9f32bc763c94c0
Autor:
Hannah Bergner
Publikováno v:
Annales de l'Institut Fourier. 71:407-446
We consider a version of the Lipman-Zariski conjecture for logarithmic vector fields and logarithmic $1$-forms on pairs. Let $(X,D)$ be a pair consisting of a normal complex variety $X$ and an effective Weil divisor $D$ such that the sheaf of logarit
Autor:
Anne Verhoef, Yijian Zeng, Matthias Cuntz, Lukas Gudmundsson, Stephan Thober, Patrick C. McGuire, Hannah Bergner, Aaron Boone, Agnès Ducharne, Rich Ellis, Hyungjun Kim, Sujan Koirala, Dave Lawrence, Keith Oleson, Sean Swenson, Salma Tafasca, Philipp de Vrese, Sonia Seneviratne, Dani Or, Harry Vereecken
Publikováno v:
EGU General Assembly 2022
Results: Soil temperature is a crucial variable in Land Surface Models (LSMs) because it affects the fractions of frozen and unfrozen water content in the soil. For example, getting the coupling between below-ground heat- and water transfer correct i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b9b15445b6050296e0fa04dae5e380e
https://doi.org/10.5194/egusphere-egu22-4349
https://doi.org/10.5194/egusphere-egu22-4349
Autor:
Hannah Bergner, Matthias Kalus
Let $${\mathcal {M}}$$ be a compact complex supermanifold. We prove that the set $${{\mathrm{Aut}}}_{{{\bar{0}}}}({\mathcal {M}})$$ of automorphisms of $${\mathcal {M}}$$ can be endowed with the structure of a complex Lie group acting holomorphically
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::504b9b85381c07c8fffe1e13115eac28
http://arxiv.org/abs/1506.01295
http://arxiv.org/abs/1506.01295