Zobrazeno 1 - 6
of 6
pro vyhledávání: '"HANDLER, SHAWN"'
Machine learning (ML) models are becoming increasingly common in the atmospheric science community with a wide range of applications. To enable users to understand what an ML model has learned, ML explainability has become a field of active research.
Externí odkaz:
http://arxiv.org/abs/2211.10378
With increasing interest in explaining machine learning (ML) models, the first part of this two-part study synthesizes recent research on methods for explaining global and local aspects of ML models. This study distinguishes explainability from inter
Externí odkaz:
http://arxiv.org/abs/2211.08943
A primary goal of the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0-3 h) severe weather forecasts. Maximizing t
Externí odkaz:
http://arxiv.org/abs/2012.00679
Autor:
Handler, Shawn L., Homeyer, Cameron R.
Publikováno v:
Journal of Applied Meteorology and Climatology, 2018 Oct 01. 57(10), 2231-2248.
Externí odkaz:
https://www.jstor.org/stable/26677267
Publikováno v:
Weather & Forecasting. Oct2020, Vol. 35 Issue 5, p1845-1863. 19p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.