Zobrazeno 1 - 10
of 57
pro vyhledávání: '"HABSIEGER, LAURENT"'
Autor:
Habsieger, Laurent
Publikováno v:
Journal of Integer Sequences, University of Waterloo, 2020
Carnevale and Voll conjectured that j (--1) j $\lambda$ 1 j $\lambda$ 2 j = 0 when $\lambda$ 1 and $\lambda$ 2 are two distinct integers. We check the conjecture when either $\lambda$ 2 or $\lambda$ 1 -- $\lambda$ 2 is small. We investigate the asymp
Externí odkaz:
http://arxiv.org/abs/2006.09704
Autor:
Habsieger, Laurent
A nontrivial solution of the equation A!B! = C! is a triple of positive integers (A, B, C) with A $\le$ B $\le$ C -- 2. It is conjectured that the only nontrivial solution is (6, 7, 10), and this conjecture has been checked up to C = 10 6. Several es
Externí odkaz:
http://arxiv.org/abs/1903.08370
Let b $\ge$ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N , one has Card{n $\le$ N : |s 3 (n) -- s 2 (n)| $\le$ 0.1457205 log n} \textgreater{} N 0.970359. The p
Externí odkaz:
http://arxiv.org/abs/1611.08180
Autor:
Habsieger, Laurent, Plagne, Alain
Sidon sets are those sets such that the sums of two of its elements never coincide. They go back to the 30s when Sidon asked for the maximal size of a subset of consecutive integers with that property. This question is now answered in a satisfactory
Externí odkaz:
http://arxiv.org/abs/1609.02771
Autor:
Habsieger, Laurent, Royer, Emmanuel
Publikováno v:
International Journal of Number Theory (2011) 12 pages
The Spiegelungssatz is an inequality between the (4)-ranks of the narrow ideal class groups of the quadratic fields (\mathbb{Q}(\sqrt{D})) and (\mathbb{Q}(\sqrt{-D})). We provide a combinatorial proof of this inequality. Our interpretation gives an a
Externí odkaz:
http://arxiv.org/abs/1102.2971
Autor:
Habsieger, Laurent, Salvy, Bruno
Publikováno v:
Mathematics of Computation, 1997 Apr 01. 66(218), 763-770.
Externí odkaz:
https://www.jstor.org/stable/2153893
Autor:
HABSIEGER, LAURENT
Publikováno v:
Transactions of the American Mathematical Society, 2014 Dec 01. 366(12), 6629-6646.
Externí odkaz:
https://www.jstor.org/stable/45119273
Autor:
HABSIEGER, Laurent
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 1996 Jan 01. 8(2), 481-484.
Externí odkaz:
https://www.jstor.org/stable/43974227
Autor:
Habsieger, Laurent
Publikováno v:
In Advances in Applied Mathematics August 2001 27(2-3):427-437
Publikováno v:
Number Theory-Diophantine Problems, Uniform Distribution and Applications
Number Theory-Diophantine Problems, Uniform Distribution and Applications, 2017
Number Theory-Diophantine Problems, Uniform Distribution and Applications, 2017
International audience; Let b ≥ 2 be an integer and let s b (n) denote the sum of the digits of the representationof an integer n in base b. For sufficiently large N , one has Card{n ≤ N : |s 3 (n) − s 2 (n)| ≤ 0.1457232 log n} > N 0.970359.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::27acc84a1e941f480580953c97b34241
https://hal.archives-ouvertes.fr/hal-02480241
https://hal.archives-ouvertes.fr/hal-02480241