Zobrazeno 1 - 10
of 115
pro vyhledávání: '"H. Yépez-Martínez"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Optical and Quantum Electronics. 54
Publikováno v:
Waves in Random and Complex Media. :1-36
drtT
In this research a new fractional-order derivative is defined and applied to the fractional perturbed Chen–Lee–Liu nonlinear equation. Analytical soliton solutions are obtained by the modified exp(−(ξ ))-expansion function method (ME
In this research a new fractional-order derivative is defined and applied to the fractional perturbed Chen–Lee–Liu nonlinear equation. Analytical soliton solutions are obtained by the modified exp(−(ξ ))-expansion function method (ME
In this research we present the application of the modified double sub-equation guess solution together with the analytical solutions of the Riccati equation to obtain new analytical exact solutions to the (1 + 1)-Schamel-KdV equation, the (1 + 1)-di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e776a9b28471736589bd1e108e94e3dc
https://hdl.handle.net/20.500.12445/2648
https://hdl.handle.net/20.500.12445/2648
Publikováno v:
Physica Scripta. 98:035202
The main goal of this work is to present a new modified version of the Atangana-Baleanu fractional derivative with Mittag-Leffler non-singular kernel and strong memory. This proposal presents important advantages when specific initial conditions are
A new local fractional-order derivative operator is introduced and the Lakshmanan–Porsezian–Daniel (LPD) model is interpreted via this operator. New analytical solutions to the LPD equation is presented by Jacobi elliptic functions and an anzätz
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef96f4d24f48be4bc2f7cef6b785ce0c
https://hdl.handle.net/20.500.12445/1673
https://hdl.handle.net/20.500.12445/1673
Novel solutions for the nonlinear dynamics of Schrodinger equation for polynomial law medium with third-order dispersion (TOD), fourth-order dispersion (FOD), and self-steepening are investigated based in a novel local fractional derivative of order
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a346b0fcb023a3d9173ba6b9c74977a
https://hdl.handle.net/20.500.12445/1620
https://hdl.handle.net/20.500.12445/1620
Publikováno v:
Indian Journal of Physics. 94:1573-1580
By using improved F-expansion method (IFEM), we study density-dependent space–time-fractional diffusion–reaction equation with quadratic nonlinearity (DDFDRE), which arises in mathematical biology. The fractional derivative is described in the se
Autor:
J. F. Gómez-Aguilar, H. Yépez-Martínez
Publikováno v:
Waves in Random and Complex Media. 31:573-596
In this paper, the conformable sub-equation method is proposed to construct exact solutions of the space-time resonant nonlinear Schrodinger equation (R-NLSE). Conformable derivatives are described...
Autor:
Victor Kamgang Kuetche, Ahmet Bekir, H. Yépez-Martínez, Mostafa Eslami, Abbagari Souleymanou, Serge P. Mukam, Hadi Rezazadeh
Publikováno v:
Chinese Journal of Physics. 58:137-150
The dynamics of solitons in birefringent optical fibers with weak nonlocal nonlinearity is studied in this paper, in presence of four-wave mixing terms in the governing model. There are three main types of exact one-soliton solutions retrieved for th