Zobrazeno 1 - 6
of 6
pro vyhledávání: '"H. W. Block"'
Autor:
H. W. Block
Publikováno v:
Encyclopedia of Statistical Sciences
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d5f579784aa269edb92296663eb89d4
https://doi.org/10.1002/0471667196.ess1728.pub2
https://doi.org/10.1002/0471667196.ess1728.pub2
Publikováno v:
Henry W. Block, Allan R. Sampson, and Thomas H. Savits, eds. Topics in statistical dependence (Hayward, CA: Institute of Mathematical Statistics, 1990), 69-83
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1b0e6c8b6f81deb4140e241cb2b3ecc
https://doi.org/10.1214/lnms/1215457550
https://doi.org/10.1214/lnms/1215457550
Publikováno v:
Advances in Applied Probability. 20:798-821
We present autoregressive (AR) and autoregressive moving average (ARMA) processes with bivariate exponential (BE) and bivariate geometric (BG) distributions. The theory of positive dependence is used to show that in various cases, the BEAR, BGAR, BEA
Autor:
H. W. Block
Publikováno v:
Ann. Math. Statist. 42, no. 6 (1971), 2134-2138
Let $S_n = \sum^{k_n}_{k=1} X_{nk}$ and $X$ be random variables with distribution functions $F_n(x)$ and $F(x)$. No assumptions are made that the $(X_{nk})$ have finite means or variances. Also, no independence conditions are assumed. A bound is foun
Autor:
H. W. Block
Publikováno v:
Ann. Math. Statist. 41, no. 4 (1970), 1334-1338
2. A convergence theorem for independent systems. Let each Xnk have mean Yink and variance a 2 which we shall assume exists. Let S Zkn = Xk k and (2 = Ekn1 o 2 If for each n, xni Xn2 .. Xnkn are independent we say that (Xnk) is an independent system.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf4720a4a1d85fad0d35d42c6b3c5d0f
http://projecteuclid.org/euclid.aoms/1177696907
http://projecteuclid.org/euclid.aoms/1177696907