Zobrazeno 1 - 8
of 8
pro vyhledávání: '"H. M. Nagesh"'
Autor:
Humanities, Pes University-Electronic City Campus, Hosur Road , Bangalore , India, Girish V. R, H. M. Nagesh
Publikováno v:
Open Journal of Mathematical Sciences, Vol 4, Iss 1, Pp 470-475 (2020)
Let \(G=(V,E)\) be a graph. Then the first and second entire Zagreb indices of \(G\) are defined, respectively, as \(M_{1}^{\varepsilon}(G)=\displaystyle \sum_{x \in V(G) \cup E(G)} (d_{G}(x))^{2}\) and \(M_{2}^{\varepsilon}(G)=\displaystyle \sum_{\{
Autor:
H. M. Nagesh, Humanities, Pes University-Electronic City Campus, Hosur Road , Bangalore , India, M. C. Mahesh Kumar
Publikováno v:
Engineering and Applied Science Letters, Vol 1, Iss 1, Pp 29-42 (2018)
For an arborescence \(A_r\), a directed pathos total digraph \(Q=DPT(A_r)\) has vertex set \(V(Q)=V(A_r)∪A(A_r)∪P(A_r)\), where \(V(A_r)\) is the vertex set, \(A(A_r)\) is the arc set, and \(P(A_r)\) is a directed pathos set of \(A_r\). The arc s
Autor:
Humanities, Pes University-Electronic City Campus, Hosur Road , Bangalore , India, M. C. Mahesh Kumar, H. M. Nagesh
Publikováno v:
Open Journal of Mathematical Sciences, Vol 2, Iss 1, Pp 202-208 (2018)
Let \(D\) be a connected digraph of order \(n\); \((n \geq 3)\) and let \(B(D)=\{B_1,B_2,\ldots,B_N\}\) be a set of blocks of \(D\). The block digraph \(Q=\mathbb{B}(D)\) has vertex set \(V(Q)=B(D)\) and arc set \(A(Q)=B_iB_j\) and \(B_i,B_j \in V(Q)
Autor:
H. M, Nagesh
Publikováno v:
Bulletin of International Mathematical Virtual Institute; 2022, Vol. 12 Issue 1, p17-26, 10p
Autor:
H. M., Nagesh1 nageshhm@pes.edu, Chandrasekhar, R.2 dr.chandri@gmail.com
Publikováno v:
International Journal of Mathematical Combinatorics. Dec2015, Vol. 4, p99-103. 5p.
Autor:
N. S., Narahari1 narahari_nittur@yahoo.com, S., Badekara2 dr_bsnrao@dr-ait.org, H. M., Nagesh3 nageshhm@pes.edu
Publikováno v:
International Journal of Mathematical Combinatorics. Sep2023, Vol. 3, p118-128. 11p.
Autor:
H. C., Shilpa1 shilpahc539@gmail.com, K., Gayathri1 gayathri.k@reva.edu.in, H. M., Nagesh2 nageshhm@pes.edu, N., Narahari3 narahari@tumkuruniversity.in
Publikováno v:
International Journal of Mathematical Combinatorics. Jun2023, Vol. 2, p38-50. 13p.
The path number of a graph G is the number of paths in any pathos. The path number of a tree T equals k, where 2k is the number of odd degree vertices of T Harary and Stanton calculated the path number of certain classes of graphs like trees and comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e471ef93f647e432c8081720cd2429fa