Zobrazeno 1 - 10
of 84
pro vyhledávání: '"H. Kestelman"'
Autor:
H. Kestelman
Publikováno v:
British Journal of Statistical Psychology. 5:1-6
Autor:
H. Kestelman
Publikováno v:
Mathematika. 2:97-104
Two finite real functions ƒ ( x ) and g ( x ), defined for — ∞ x Riemann equivalent if | ƒ ( x )— g ( x )| has a zero Riemann integral over every finite interval; we then write ƒ~g or N. G. de Bruijn conjectured that if ƒ ( x + h )~ ƒ ( x
Autor:
H. Kestelman
Publikováno v:
Journal of the London Mathematical Society. :174-178
Autor:
H. Kestelman
Publikováno v:
Journal of the London Mathematical Society. :232-240
Autor:
H. Kestelman
Publikováno v:
Mathematika. 3:140-143
A complex-valued function ƒ is said by W. Maak [1] to be almost periodic (a.p.) on R n if for every positive number e there is a decomposition of R n into a finite number of sets S such that for all h in R n and all pairs x , y belonging to the same
Autor:
H. Kestelman, C. A. B. Smith
Publikováno v:
Journal of the London Mathematical Society. :131-135
Autor:
H. Kestelman
Publikováno v:
Fundamenta Mathematicae. 34:144-147
Autor:
H. Kestelman
Publikováno v:
The Mathematical Gazette. 45:17-23
1. Introduction. If F and G are differentiate functions of one variable, the “function of a function” rule iswhere f and g denote the derivatives of F and G respectively.
Autor:
H. Kestelman
Publikováno v:
Journal of the London Mathematical Society. :283-290
Autor:
H. Kestelman
Publikováno v:
Canadian Journal of Mathematics. 18:974-980
A subset S of an abelian group G is said to have a centre at a if whenever x belongs to S so does 2a — x. This note is mainly concerned with self-centred sets, i.e. those S with the property that every element of S is a centre of S. Such sets occur