Zobrazeno 1 - 10
of 39
pro vyhledávání: '"H. E. Bell"'
Autor:
H. E. Bell, M. N. Daif
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2014 (2014)
A map f of the ring R into itself is of period 2 if f2x=x for all x∈R; involutions are much studied examples. We present some commutativity results for semiprime and prime rings with involution, and we study the existence of derivations and general
Externí odkaz:
https://doaj.org/article/88566cb38c01452c8c718926fb6ba9f6
Autor:
H. E. Bell, A. A. Klein
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 16, Iss 2, Pp 351-354 (1993)
It is conjectured that every ring with a finite maximal subring is finite. We prove this conjecture for PI-rings.
Externí odkaz:
https://doaj.org/article/b0d082ec60a241fa98fe42f9ee8e8698
Autor:
H. E. Bell, M. N. Daif
Publikováno v:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry. 57:129-136
Let \(R\) be a ring with center \(Z\). A map \(D\) of \(R\) (resp. \(T\) of \(R\)) is called a centrally-extended derivation (resp. a centrally-extended endomorphism) if for each \(x,y\in R, D(x+y)-D(x)-D(y)\in Z\) and \(D(xy)-D(x)y-xD(y)\in Z\) (res
Autor:
Abraham A. Klein, H. E. Bell
Publikováno v:
Israel Journal of Mathematics. 116:249-252
Autor:
M. N. Daif, H. E. Bell
Publikováno v:
Acta Mathematica Hungarica. 66:337-343
Autor:
H. E. Bell
Publikováno v:
Acta Mathematica Hungarica. 63:113-117
Autor:
A. A. Klein, H. E. Bell
Publikováno v:
Canadian Mathematical Bulletin. 34:295-300
A ring R is called an EC-ring if for each x, y ∊ R, there exist distinct positive integers m, n such that the extended commutators [x, y]m and [x, y]n are equal. We show that in certain EC-rings, the commutator ideal is periodic; we establish commu
Autor:
H. E. Bell, A. A. Klein
Publikováno v:
Archiv der Mathematik; May2003, Vol. 80 Issue 4, p354-357, 4p
Autor:
H. E. Bell
Publikováno v:
Acta Mathematica Academiae Scientiarum Hungaricae. 36:293-302
A ring or near-ring R is called periodic if for each xCR, there exist distinct positive integers n, m for which x"=x". This paper continues the study of commutativity in such rings and near-rings which was previously undertaken in [1]--[5]. The first
Autor:
H. E. Bell, Luise-Charlotte Kappe
Publikováno v:
Acta Mathematica Hungarica. 53:339-346
The primary purpose of this paper is to investigate some commutator conditions for rings, which were suggested by group-theoretic results of F, W. Levi, I. D. Macdonald and N. D. Gupta. Most of these conditions can be simply interpreted in terms of i