Zobrazeno 1 - 10
of 37
pro vyhledávání: '"H. Bresinsky"'
Publikováno v:
Rocky Mountain J. Math. 42, no. 3 (2012), 823-845
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::360dab6a5308b6821058f855eee85e1a
http://projecteuclid.org/euclid.rmjm/1344430861
http://projecteuclid.org/euclid.rmjm/1344430861
Publikováno v:
Nagoya Mathematical Journal. 136:81-114
Our setting for this paper is projective 3-spaceover an algebraically closed fieldK. By a curveC⊂is meant a 1-dimensional, equidimensional projective algebraic set, which is locally Cohen-Macaulay. Letbe the Hartshorne-Rao module of finite length (
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 47:329-332
Let n i , 1 ≤ i ≤ r , r ≥ 3 {n_i},1 \leq i \leq r,r \geq 3 , be natural numbers such that ( n 1 , ⋯ , n r ) = 1 ({n_1}, \cdots ,{n_r}) = 1 and n i = Σ j = 1 r z j n j , z j {n_i} = \Sigma _{j = 1}^r{z_j}{n_j},{z_j} . nonnegative integers, im
Autor:
H. Bresinsky
Publikováno v:
Monatshefte f�r Mathematik. 98:21-28
The arithmetical Cohen-Macaulay property for monomial curves in ℙK3 with generic zero\((t_0^{n_3 } ,t_0^{n_3 - n_1 } t_0^{n_1 } ,t_0^{n_3 - n_2 } t_0^{n_2 } ,t_0^{n_3 } )\) was shown in [2] to be true forn3>(n2−1)(n2−n1),n3>n2, (n1,n2,n3)=1. He
Publikováno v:
Communications in Algebra. 15:1799-1814
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 32:381-384
The symmetric semigroups of nonnegative integers and their generators, corresponding to algebroid branches of the plane, are determined. Let a be an algebroid branch of a plane curve with coefficients in an algebraically closed field with characteris
Autor:
Henry W. Block, C. W. Dodge, H. Bresinsky, D. L. Russell, Michael Luwish, J. F. Hurley, Paul Kelly, Michael Goldberg, Frank Kocher, S. Schuster
Publikováno v:
The American Mathematical Monthly. 79:1046-1054
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 75:23-24
It is shown constructively that all monomial space curves in affine 3-space are set-theoretic complete intersections. It was shown by J. Herzog (private communication) that all space curves in affine 3-space A3 over an arbitrary field K, given parame
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 47:329
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 75:23