Zobrazeno 1 - 10
of 197
pro vyhledávání: '"H. Bresinsky"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jochen Kästner
Publikováno v:
Manuscripta Mathematica. 54:197-204
By means of a class of examples it is shown that all nonnegative integers are assumed by the difference between the Buchsbaum invariant and the length of the semigroup ideal for monomial Buchsbaum curves. This answers a question of Bresinsky in [1].
Autor:
Kästner, Jochen
Publikováno v:
Manuscripta Mathematica; 1986, Vol. 54 Issue 1/2, p197-204, 8p
Publikováno v:
Rocky Mountain J. Math. 42, no. 3 (2012), 823-845
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::360dab6a5308b6821058f855eee85e1a
http://projecteuclid.org/euclid.rmjm/1344430861
http://projecteuclid.org/euclid.rmjm/1344430861
Publikováno v:
Nagoya Mathematical Journal. 136:81-114
Our setting for this paper is projective 3-spaceover an algebraically closed fieldK. By a curveC⊂is meant a 1-dimensional, equidimensional projective algebraic set, which is locally Cohen-Macaulay. Letbe the Hartshorne-Rao module of finite length (
Publikováno v:
Proceedings of the American Mathematical Society; Sep2024, Vol. 152 Issue 9, p3665-3678, 14p
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 47:329-332
Let n i , 1 ≤ i ≤ r , r ≥ 3 {n_i},1 \leq i \leq r,r \geq 3 , be natural numbers such that ( n 1 , ⋯ , n r ) = 1 ({n_1}, \cdots ,{n_r}) = 1 and n i = Σ j = 1 r z j n j , z j {n_i} = \Sigma _{j = 1}^r{z_j}{n_j},{z_j} . nonnegative integers, im
Autor:
H. Bresinsky
Publikováno v:
Monatshefte f�r Mathematik. 98:21-28
The arithmetical Cohen-Macaulay property for monomial curves in ℙK3 with generic zero\((t_0^{n_3 } ,t_0^{n_3 - n_1 } t_0^{n_1 } ,t_0^{n_3 - n_2 } t_0^{n_2 } ,t_0^{n_3 } )\) was shown in [2] to be true forn3>(n2−1)(n2−n1),n3>n2, (n1,n2,n3)=1. He
Publikováno v:
Communications in Algebra. 15:1799-1814
Autor:
H. Bresinsky
Publikováno v:
Proceedings of the American Mathematical Society. 32:381-384
The symmetric semigroups of nonnegative integers and their generators, corresponding to algebroid branches of the plane, are determined. Let a be an algebroid branch of a plane curve with coefficients in an algebraically closed field with characteris