Zobrazeno 1 - 10
of 18
pro vyhledávání: '"H. A. Atia"'
Autor:
Chen Yue, H. M. Abu-Donia, H. A. Atia, Omnia M. A. Khater, Mona S. Bakry, Eman Safaa, Mostafa M. A. Khater
Publikováno v:
AIP Advances, Vol 13, Iss 4, Pp 045113-045113-9 (2023)
This study presents fundamental theorems, lemmas, and mapping definitions. There are three types of mappings: binary operators, compatible mappings, and sequentially continuous mappings. The symbols used to represent fuzzy metric spaces are intuitive
Externí odkaz:
https://doaj.org/article/391b27c76ba4402a8b08a92c2bb5f645
Autor:
H. A. Atia
Publikováno v:
Journal of the Egyptian Mathematical Society, Vol 27, Iss 1, Pp 1-10 (2019)
Abstract Consider the bi-harmonic differential expression of the form A=△M2+q $ A=\triangle _{M}^{2}+q\ $ on a manifold of bounded geometry (M,g) with metric g, where △ M is the scalar Laplacian on M and q≥0 is a locally integrable function on
Externí odkaz:
https://doaj.org/article/7fb7ccd7839e4fe09e46d799fba9cc2f
Publikováno v:
Applied Mathematics & Information Sciences. 14:1029-1033
Publikováno v:
Alexandria Engineering Journal, Vol 59, Iss 3, Pp 1239-1242 (2020)
This research paper investigates and proves some theorems of the fixed point for self–mapping [ T : X → X ] under ( ϕ , ψ ) –contractive mappings and ( ϕ , φ ) –contractive mappings in Menger probabilistic 2–metric space. These theorems
Publikováno v:
Journal of Nonlinear Sciences and Applications. 13:323-329
Autor:
H. A. Atia
Publikováno v:
Journal of Contemporary Mathematical Analysis. 51:222-226
In this paper we obtain sufficient conditions for the bi-harmonic differential operator A = ΔE2 + q to be separated in the space L2 (M) on a complete Riemannian manifold (M,g) with metric g, where ΔE is the magnetic Laplacian onM and q ≥ 0 is a l
Autor:
H. A. Atia
Publikováno v:
Carpathian Journal of Mathematics. 30:31-37
Our goal in this work is to study the separation problem for the Grushin differential operator formed by ... in the Banach space H1(R2), where the potential Q(x, y) ∈ L(1), is a bounded linear operator which transforms at 1 in value of (x, y).
Autor:
H. A. Atia, R.A. Mahmoud
Publikováno v:
Applicable Analysis. 91:2133-2143
In this work we have introduced a new proof of the separation of the Grushin differential operator of the form in the Hilbert space H = L 2(Ω), with potential q(x, y)∈C 1(Ω), by the disconjugacy property. We show that certain properties of positi
Autor:
H. A. Atia
Publikováno v:
Lobachevskii Journal of Mathematics. 32:180-188
In this paper we investigate the separation property of the Grushin differential operator of the form $$Gu = - \frac{1} {2}\left( {\frac{{\partial ^2 u}} {{\partial x^2 }} + \frac{{x^4 }} {4}\frac{{\partial ^2 u}} {{\partial y^2 }}} \right) + Q(x,y)u
Publikováno v:
Journal of Mathematical Analysis and Applications. 336(1):81-92
In this paper we have studied the separation for the Laplace–Beltrami differential operator of the form Au =− 1 √ det g(x) ∂ ∂xi det g(x)g −1 (x) ∂u ∂xj + V (x)u(x), ∀x = (x1 ,x 2 ,...,x n) ∈ Ω ⊂ R n , in the Hilbert space H =