Zobrazeno 1 - 10
of 44
pro vyhledávání: '"H J Korsch"'
Publikováno v:
New Journal of Physics, Vol 26, Iss 1, p 019501 (2024)
Externí odkaz:
https://doaj.org/article/f6c0ed7d2ba743f2955f94a4796b53f9
Autor:
Mossmann, H. J. Korsch. S.
Publikováno v:
Phys. Lett. A 317 (2003) 54-63
The dynamics of the driven tight binding model for Wannier-Stark systems is formulated and solved using a dynamical algebra. This Lie algebraic approach is very convenient for evaluating matrix elements and expectation values. It is also shown that a
Externí odkaz:
http://arxiv.org/abs/quant-ph/0307203
Publikováno v:
New Journal of Physics, Vol 18, Iss 7, p 075009 (2016)
Many features of Bloch oscillations in one-dimensional quantum lattices with a static force can be described by quasiclassical considerations for example by means of the acceleration theorem, at least for Hermitian systems. Here the quasiclassical ap
Externí odkaz:
https://doaj.org/article/2f4a1a5c38a1454ab7fa4483efb1e16d
Autor:
K. Schätzel, J. Weber, J. Rassow, F. Kremer, M. Stutzmann, W. Buckel, B. Lüthi, H. J. Korsch, H. Keiter
Publikováno v:
Physik Journal. 49:137-140
Autor:
D. Witthaut, H. J. Korsch
A useful semiclassical method to calculate eigenfunctions of the Schroedinger equation is the mapping to a well-known ordinary differential equation, as for example Airy's equation. In this paper we generalize the mapping procedure to the nonlinear S
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::455ed229a3bb98dd8b6024ccc643844e
http://arxiv.org/abs/quant-ph/0608099
http://arxiv.org/abs/quant-ph/0608099
Autor:
H. J. Korsch, H.-J. Jodl
Publikováno v:
Chaos ISBN: 9783662038680
Chaos ISBN: 9783662029930
Chaos ISBN: 9783662029930
Dynamical systems are often expressed in terms of ordinary differential equations. An example are the canonical equations of motion in Hamiltonian systems $${\dot p_i} = - \frac{{\partial H}}{{\partial {q_i}}},\;{\dot p_i} = \frac{{\partial H}}{{\par
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7450756de49d124f3c164880e9a8d130
https://doi.org/10.1007/978-3-662-03866-6_12
https://doi.org/10.1007/978-3-662-03866-6_12
Autor:
H. J. Korsch, H.-J. Jodl
Publikováno v:
Chaos ISBN: 9783662038680
Chaos ISBN: 9783662029930
Chaos ISBN: 9783662029930
Nonlinear electronic networks can be used as a laboratory set-up of nonlinear systems. The dynamics directly generates an electric signal, which can be easily handled for further analysis. Such an electronic circuit is a physical system of the real w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::184ab6f2aa909439bc277e0922666d7a
https://doi.org/10.1007/978-3-662-03866-6_10
https://doi.org/10.1007/978-3-662-03866-6_10
Autor:
H.-J. Jodl, H. J. Korsch
Publikováno v:
Chaos ISBN: 9783662038680
The programs are designed to run with following system requirements: CPU: 80286 processor or higher Operating systems: MS-DOS 3.0; Win 3.11; Win95; WinNT 4.0; OS/2 System memory: 640K (extended memory is not supported) Disk space: 2.0 MBytes for exec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7b3385724b5c0213c9a706d28ed76c32
https://doi.org/10.1007/978-3-662-03866-6_13
https://doi.org/10.1007/978-3-662-03866-6_13
Autor:
H. J. Korsch, H.-J. Jodl
Publikováno v:
Chaos ISBN: 9783662038680
Chaos ISBN: 9783662029930
Chaos ISBN: 9783662029930
As already pointed out in Chap. 9, discrete iterated maps appear almost routinely in studies of nonlinear dynamical systems, e.g. as Poincare maps. Because they are discrete, such maps are much simpler to study (both numerically and analytically) tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4de5d71c06873213805ba5b206d7c286
https://doi.org/10.1007/978-3-662-03866-6_11
https://doi.org/10.1007/978-3-662-03866-6_11
Autor:
H. J. Korsch, H.-J. Jodl
Publikováno v:
Chaos ISBN: 9783662038680
Chaos ISBN: 9783662029930
Chaos ISBN: 9783662029930
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0efab5a8c0e443d17bf86165b2aa9f7
https://doi.org/10.1007/978-3-662-03866-6_9
https://doi.org/10.1007/978-3-662-03866-6_9