Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Hüper, Knut"'
We discuss the rolling, without slip and without twist, of Stiefel manifolds equipped with $\alpha$-metrics, from an intrinsic and an extrinsic point of view. We, however, start with a more general perspective, namely by investigating intrinsic rolli
Externí odkaz:
http://arxiv.org/abs/2309.14854
Autor:
Zimmermann, Ralf, Hüper, Knut
We address the problem of computing Riemannian normal coordinates on the real, compact Stiefel manifold of orthogonal frames. The Riemannian normal coordinates are based on the so-called Riemannian exponential and the Riemannian logarithm maps and en
Externí odkaz:
http://arxiv.org/abs/2103.12046
Publikováno v:
In Linear Algebra and Its Applications June 2024
Autor:
Seifert, Bastian, Hüper, Knut
The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algeb
Externí odkaz:
http://arxiv.org/abs/1811.04033
Voxel representation and processing is an important issue in a broad spectrum of applications. E.g., 3D imaging in biomedical engineering applications, video game development and volumetric displays are often based on data representation by voxels. B
Externí odkaz:
http://arxiv.org/abs/1807.10058
Autor:
Schlarb, Markus1 (AUTHOR) markus.schlarb@mathematik.uni-wuerzburg.de, Hüper, Knut1 (AUTHOR) hueper@mathematik.uni-wuerzburg.de, Markina, Irina2 (AUTHOR) irina.markina@uib.no, Silva Leite, Fátima3,4 (AUTHOR) fleite@mat.uc.pt
Publikováno v:
Mathematics (2227-7390). Nov2023, Vol. 11 Issue 21, p4540. 36p.
Publikováno v:
Frontiers in Applied Mathematics & Statistics; 2024, p1-12, 12p
Autor:
Hüper, Knut1 (AUTHOR) hueper@mathematik.uni-wuerzburg.de, Silva Leite, Fátima2,3 (AUTHOR) fleite@mat.uc.pt
Publikováno v:
Mathematics (2227-7390). 8/15/2023, Vol. 11 Issue 16, p3545. 23p.
Publikováno v:
Automation (2673-4052); Sep2024, Vol. 5 Issue 3, p360-372, 13p
We propose a conjugate gradient type optimization technique for the computation of the Karcher mean on the set of complex linear subspaces of fixed dimension, modeled by the so-called Grassmannian. The identification of the Grassmannian with Hermitia
Externí odkaz:
http://arxiv.org/abs/1209.3197