Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Hüls, Thorsten"'
Autor:
Beyn, Wolf-Jürgen, Hüls, Thorsten
In this work we introduce the notion of an angular spectrum for a linear discrete time nonautonomous dynamical system. The angular spectrum comprises all accumulation points of longtime averages formed by maximal principal angles between successive s
Externí odkaz:
http://arxiv.org/abs/2404.02694
Autor:
Beyn, Wolf-Jürgen, Hüls, Thorsten
In this work we provide detailed estimates of maximal principal angles between subspaces and we analyze their smoothness for smoothly varying subspaces. This leads to a new definition of angular values for linear dynamical systems in continuous time.
Externí odkaz:
http://arxiv.org/abs/2303.07918
Autor:
Beyn, Wolf-Jürgen, Hüls, Thorsten
Publikováno v:
SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 22, No. 1, pp. 162--198, 2023
This work focuses on angular values of nonautonomous dynamical systems which have been introduced for general random and (non)autonomous dynamical systems in a previous publication [W.-J. Beyn, G. Froyland, and T. H\"uls, SIAM J. Appl. Dyn. Syst., 21
Externí odkaz:
http://arxiv.org/abs/2012.11340
We introduce the notion of angular values for deterministic linear difference equations and random linear cocycles. We measure the principal angles between subspaces of fixed dimension as they evolve under nonautonomous or random linear dynamics. The
Externí odkaz:
http://arxiv.org/abs/2012.11305
Autor:
Beyn, Wolf-Jürgen1 (AUTHOR), Hüls, Thorsten1 (AUTHOR) huels@math.uni-bielefeld.de
Publikováno v:
Dynamical Systems: An International Journal. Sep2024, Vol. 39 Issue 3, p461-499. 39p.
Covariant vectors, Lyapunov vectors, or Oseledets vectors are increasingly being used for a variety of model analyses in areas such as partial differential equations, nonautonomous differentiable dynamical systems, and random dynamical systems. These
Externí odkaz:
http://arxiv.org/abs/1204.0871
Autor:
Beyn, Wolf-Juergen, Huels, Thorsten
By a classical theorem transversal homoclinic points of maps lead to shift dynamics on a maximal invariant set, also referred to as a homoclinic tangle. In this paper we study the fate of homoclinic tangles in parameterized systems from the viewpoint
Externí odkaz:
http://arxiv.org/abs/1112.3145
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Beyn, Wolf-Jürgen, Hüls, Thorsten
This work focuses on angular values of nonautonomous dynamical systems which have been introduced for general random and (non)autonomous dynamical systems in a previous publication [W.-J. Beyn, G. Froyland, and T. H\"uls, SIAM J. Appl. Dyn. Syst., 21
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa16428c496fcf7b433ff0809c690ea3
https://pub.uni-bielefeld.de/record/2969721
https://pub.uni-bielefeld.de/record/2969721
Publikováno v:
In Physica D: Nonlinear Phenomena 15 March 2013 247(1):18-39