Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Höngesberg, Hans"'
Autor:
Albion, Seamus, Eisenkölbl, Theresia, Fischer, Ilse, Gangl, Moritz, Höngesberg, Hans, Krattenthaler, Christian, Rubey, Martin
We exhibit, for any positive integer parameter $s$, an involution on the set of integer partitions of $n$. These involutions show the joint symmetry of the distributions of the following two statistics. The first counts the number of parts of a parti
Externí odkaz:
http://arxiv.org/abs/2407.16043
Publikováno v:
European Journal of Combinatorics 122 (2024), 104000
The skew Schur functions admit many determinantal expressions. Chief among them are the (dual) Jacobi-Trudi formula and the Lascoux-Pragacz formula, which is a skew analogue of the Giambelli identity. Comparatively, the skew characters of the symplec
Externí odkaz:
http://arxiv.org/abs/2305.11730
Autor:
Fischer, Ilse, Höngesberg, Hans
Vertically symmetric alternating sign matrices (VSASMs) of order $2n+1$ are known to be equinumerous with lozenge tilings of a hexagon with side lengths $2n+2,2n,2n+2,2n,2n+2,2n$ and a central triangular hole of size $2$ that exhibit a cyclical as we
Externí odkaz:
http://arxiv.org/abs/2207.04469
Publikováno v:
In European Journal of Combinatorics December 2024 122
Autor:
Höngesberg, Hans
Publikováno v:
Annals of Combinatorics, 26(3):673-699, 2022
We construct weight-preserving bijections between column strict shifted plane partitions with one row and alternating sign trapezoids with exactly one column in the left half that sums to $1$. Amongst other things, they relate the number of $-1$s in
Externí odkaz:
http://arxiv.org/abs/2102.07555
Autor:
Höngesberg, Hans
Publikováno v:
The Electronic Journal of Combinatorics, 29(3):P3.42, 2022
Alternating sign trapezoids have recently been introduced as a generalisation of alternating sign triangles. Fischer established a threefold refined enumeration of alternating sign trapezoids and provided three statistics on column strict shifted pla
Externí odkaz:
http://arxiv.org/abs/2006.13388
Autor:
Höngesberg, Hans
Publikováno v:
Journal of Combinatorial Theory, Series A 177 (2021) 105336
Halved monotone triangles are a generalisation of vertically symmetric alternating sign matrices (VSASMs). We provide a weighted enumeration of halved monotone triangles with respect to a parameter which generalises the number of $-1$s in a VSASM. Am
Externí odkaz:
http://arxiv.org/abs/1907.13250
Autor:
Höngesberg, Hans
Publikováno v:
In Journal of Combinatorial Theory, Series A January 2021 177
Autor:
Höngesberg, Hans1 (AUTHOR) hans.hoengesberg@univie.ac.at
Publikováno v:
Annals of Combinatorics. Sep2022, Vol. 26 Issue 3, p673-699. 27p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.