Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Hägele, Miriam"'
Autor:
Aversa, Marco, Nobis, Gabriel, Hägele, Miriam, Standvoss, Kai, Chirica, Mihaela, Murray-Smith, Roderick, Alaa, Ahmed, Ruff, Lukas, Ivanova, Daniela, Samek, Wojciech, Klauschen, Frederick, Sanguinetti, Bruno, Oala, Luis
We present DiffInfinite, a hierarchical diffusion model that generates arbitrarily large histological images while preserving long-range correlation structural information. Our approach first generates synthetic segmentation masks, subsequently used
Externí odkaz:
http://arxiv.org/abs/2306.13384
Autor:
Hägele, Miriam, Eschrich, Johannes, Ruff, Lukas, Alber, Maximilian, Schallenberg, Simon, Guillot, Adrien, Roderburg, Christoph, Tacke, Frank, Klauschen, Frederick
In this paper, we present a deep learning segmentation approach to classify and quantify the two most prevalent primary liver cancers - hepatocellular carcinoma and intrahepatic cholangiocarcinoma - from hematoxylin and eosin (H&E) stained whole slid
Externí odkaz:
http://arxiv.org/abs/2302.01813
Autor:
Hägele, Miriam, Lehtomaa, Jaakko
Publikováno v:
Risks 2023, 11, 130
In univariate data, there exist standard procedures for identifying dominating features that produce the largest observations. However, in the multivariate setting, the situation is quite different. This paper aims to provide tools and algorithms for
Externí odkaz:
http://arxiv.org/abs/2112.05759
Autor:
Hägele, Miriam, Lehtomaa, Jaakko
Publikováno v:
J. Risk Financial Manag.2021,14, 202
Modern risk modelling approaches deal with vectors of multiple components. The components could be, for example, returns of financial instruments or losses within an insurance portfolio concerning different lines of business. One of the main problems
Externí odkaz:
http://arxiv.org/abs/2103.11707
Autor:
Hägele, Miriam
Publikováno v:
Statistics & Probability Letters Volume 166, November 2020, 108871
This article studies asymptotic approximations of ruin probabilities of multivariate random walks with heavy-tailed increments. Under our assumptions, the distributions of the increments are closely connected to multivariate subexponentiality and adm
Externí odkaz:
http://arxiv.org/abs/2005.12637
Autor:
Hägele, Miriam, Seegerer, Philipp, Lapuschkin, Sebastian, Bockmayr, Michael, Samek, Wojciech, Klauschen, Frederick, Müller, Klaus-Robert, Binder, Alexander
Publikováno v:
Sci Rep 10, 6423 (2020)
Deep learning has recently gained popularity in digital pathology due to its high prediction quality. However, the medical domain requires explanation and insight for a better understanding beyond standard quantitative performance evaluation. Recentl
Externí odkaz:
http://arxiv.org/abs/1908.06943
Autor:
Alber, Maximilian, Lapuschkin, Sebastian, Seegerer, Philipp, Hägele, Miriam, Schütt, Kristof T., Montavon, Grégoire, Samek, Wojciech, Müller, Klaus-Robert, Dähne, Sven, Kindermans, Pieter-Jan
In recent years, deep neural networks have revolutionized many application domains of machine learning and are key components of many critical decision or predictive processes. Therefore, it is crucial that domain specialists can understand and analy
Externí odkaz:
http://arxiv.org/abs/1808.04260
Autor:
Binder, Alexander, Bockmayr, Michael, Hägele, Miriam, Wienert, Stephan, Heim, Daniel, Hellweg, Katharina, Stenzinger, Albrecht, Parlow, Laura, Budczies, Jan, Goeppert, Benjamin, Treue, Denise, Kotani, Manato, Ishii, Masaru, Dietel, Manfred, Hocke, Andreas, Denkert, Carsten, Müller, Klaus-Robert, Klauschen, Frederick
Recent advances in cancer research largely rely on new developments in microscopic or molecular profiling techniques offering high level of detail with respect to either spatial or molecular features, but usually not both. Here, we present a novel ma
Externí odkaz:
http://arxiv.org/abs/1805.11178
Autor:
Hägele, Miriam1 (AUTHOR), Lehtomaa, Jaakko1 (AUTHOR) jaakko.lehtomaa@helsinki.fi
Publikováno v:
Risks. Jul2023, Vol. 11 Issue 7, p130. 18p.
Autor:
Hägele, Miriam1, Seegerer, Philipp1, Lapuschkin, Sebastian2, Bockmayr, Michael3,4, Samek, Wojciech2, Klauschen, Frederick3 frederick.klauschen@charite.de, Müller, Klaus-Robert1,5,6 klaus-robert.mueller@tu-berlin.de, Binder, Alexander7 alexander_binder@sutd.edu.sg
Publikováno v:
Scientific Reports. 4/14/2020, Vol. 10 Issue 1, p1-12. 12p.