Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Gwang-Hui Kim"'
Autor:
Yang-Hi Lee, Gwang-Hui Kim
Publikováno v:
Mathematics, Vol 7, Iss 3, p 280 (2019)
In this paper, we investigate the generalized Hyers-Ulam stability of the Pexider functional equation f ( x + y , z + w ) = g ( x , z ) + h ( y , w ) .
Externí odkaz:
https://doaj.org/article/df93bbb439d24ab3b748bfcbc995d046
Autor:
Hye Jeang Hwang, Gwang Hui Kim
Publikováno v:
Electronic Research Archive, Vol 31, Iss 10, Pp 6347-6362 (2023)
In this paper, we find solutions and investigate the superstability bounded by a function (Gǎvruta sense) for the $ p $-power-radical functional equation related to sine function equation: $ \begin{equation*} f\left(\sqrt[p]{\frac{x^{p}+y^{p}}{2
Externí odkaz:
https://doaj.org/article/6b917d1e36914c139ff8778cc2abf02a
Autor:
GWANG HUI KIM1 ghkim@kangnam.ac.kr
Publikováno v:
Journal of Computational Analysis & Applications. Jan2024, Vol. 32 Issue 1, p22-36. 15p.
Autor:
Gwang Hui Kim
Publikováno v:
Mathematics and Statistics. 8:363-371
The present work continues the study for the superstability and solution of the Pexider type functional equation , which is the mixed functional equation represented by sum of the sine, cosine, tangent, hyperbolic trigonometric, and exponential funct
Autor:
Gwang Hui Kim, Yang-Hi Lee
Publikováno v:
Demonstratio Mathematica, Vol 53, Iss 1, Pp 1-7 (2020)
In this paper, we investigate the stability of an additive-quadratic-quartic functional equation$$\begin{align*}f(x+2y)& +f(x-2y)-2f(x+y)-2f(-x- y)-2f(x-y)-2f(y-x)\nonumber \\ &+4f(-x)+ 2f(x)-f(2y)-f(-2y)+4f(y)+4f(-y)=0 \end{align*}$$by the direct me
Publikováno v:
Fixed Point Theory. 20:417-430
Autor:
Gwang Hui Kim, Young Whan Lee
Publikováno v:
Mathematics and Statistics. 7:25-32
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 32, Iss 1, Pp 57-63 (2002)
The Hyers-Ulam stability in three senses is discussed by Kim (2001) for the generalized gamma functional equation g(x+p)=a(x)g(x) under some conditions which involve convergence of complicated series. In this note, those conditions are simplified to
Externí odkaz:
https://doaj.org/article/d8fa75e24f7f4aed9271bfde11c52015
Autor:
Gwang Hui Kim
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 25, Iss 4, Pp 217-229 (2001)
The Hyers-Ulam stability, the Hyers-Ulam-Rassias stability, and also the stability in the spirit of Gavruţa for each of the following quadratic functional equations f(x+y)+f(x−y)=2f(x)+2f(y), f(x+y+z)+f(x−y)+f(y−z)+f(z−x)=3f(x)+3f(y)+3f(z),
Externí odkaz:
https://doaj.org/article/d64df575033f4699bfcf8e4e191d6c7f
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2012 (2012)
Let n>1 be an integer, let A be an algebra, and X be an A-module. A quadratic function D:A→X is called a quadratic n-derivation if D(∏i=1nai)=D(a1)a22⋯an2+a12D(a2)a32⋯an2+⋯+a12a22⋯an−12D(an) for all a1,...,an∈A. We investigate the Hye
Externí odkaz:
https://doaj.org/article/c0511d32504748b5a5d7e31df9be6f83