Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Guy Bouchitté"'
For $\Omega$ varying among open bounded sets in ${\mathbb R} ^n$, we consider shape functionals $J (\Omega)$ defined as the infimum over a Sobolev space of an integral energy of the kind $\int _\Omega[ f (\nabla u) + g (u) ]$, under Dirichlet or Neum
Externí odkaz:
http://arxiv.org/abs/1401.2788
Autor:
Karol Bołbotowski, Guy Bouchitté
A remarkable connection between optimal design and Monge transport was initiated in the years 1997 in the context of the minimal elastic compliance problem and where the euclidean metric cost was naturally involved. In this paper we present different
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f0695e8316a0e44b2bc4665b709c06fc
Publikováno v:
European Journal of Applied Mathematics
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2019, 30 (6), pp.1229-1263. ⟨10.1017/s0956792518000669⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2019, 30 (6), pp.1229-1263. ⟨10.1017/s0956792518000669⟩
We study a class of optimal transport planning problems where the reference cost involves a non-linear function G(x, p) representing the transport cost between the Dirac measure δx and a target probability p. This allows to consider interesting mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a80eab6c105e0d274d21e1bfcdac90e
https://hal-univ-tln.archives-ouvertes.fr/hal-03353658
https://hal-univ-tln.archives-ouvertes.fr/hal-03353658
Autor:
Minh Phan, Guy Bouchitté
Publikováno v:
Comptes Rendus Mécanique
Comptes Rendus Mécanique, Elsevier, 2018, 346 (3), pp.206-221. ⟨10.1016/j.crme.2017.12.011⟩
Comptes Rendus Mécanique, Elsevier, 2018, 346 (3), pp.206-221. ⟨10.1016/j.crme.2017.12.011⟩
The aim of this paper is to present a general convexification recipe that can be useful for studying non-convex variational problems. In particular, this allows us to treat such problems by using a powerful primal–dual scheme. Possible further deve
Publikováno v:
Applied Mathematics and Optimization
Applied Mathematics and Optimization, Springer Verlag (Germany), 2017, ⟨10.1007/s00245-017-9455-8⟩
Applied Mathematics and Optimization, Springer Verlag (Germany), 2017, ⟨10.1007/s00245-017-9455-8⟩
We show that the compliance functional in elasticity is differentiable with respect to horizontal variations of the load term, when the latter is given by a possibly concentrated measure; moreover, we provide an integral representation formula for th
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020, ⟨10.1016/j.anihpc.2020.06.004⟩
Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020, ⟨10.1016/j.anihpc.2020.06.004⟩
International audience; We propose a duality theory for multi-marginal repulsive cost that appear in optimal transport problems arising in Density Functional Theory. The related optimization problems involve probabilities on the entire space and, as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31ddcb45aeb4c35fb3e05a89c74bbc87
http://arxiv.org/abs/1907.08425
http://arxiv.org/abs/1907.08425
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1056-1084
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1056-1084
We consider shape functionals obtained as minima on Sobolev spaces of classical integrals having smooth and convex densities, under mixed Dirichlet-Neumann boundary conditions. We propose a new approach for the computation of the second order shape d
Autor:
Ilaria Fragalà, Guy Bouchitté
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, Springer Verlag, 2018, 229 (1), pp.361-415. ⟨10.1007/s00205-018-1219-3⟩
Archive for Rational Mechanics and Analysis, Springer Verlag, 2018, 229 (1), pp.361-415. ⟨10.1007/s00205-018-1219-3⟩
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality ga
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c257dc38d79bb0a7fbeaa019575d8cb
https://hal-univ-tln.archives-ouvertes.fr/hal-01804593
https://hal-univ-tln.archives-ouvertes.fr/hal-01804593
Autor:
Pierre Bousquet, Guy Bouchitté
Publikováno v:
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, In press
Transactions of the American Mathematical Society, American Mathematical Society, In press
Transactions of the American Mathematical Society, In press
Transactions of the American Mathematical Society, American Mathematical Society, In press
International audience; We establish the uniqueness of the solutions for a degenerate scalar problem in the multiple integrals calculus of variations. The proof requires as a preliminary step the study of the regularity properties of the solutions an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ace5b03736435aa5c20f22e736f3ad13
https://hal.archives-ouvertes.fr/hal-01405468/file/Bouchitte-Bousquet-2016-11-29.pdf
https://hal.archives-ouvertes.fr/hal-01405468/file/Bouchitte-Bousquet-2016-11-29.pdf
Autor:
Guy Bouchitté, Ilaria Fragalà
Publikováno v:
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2015, 353 (4), pp.375--379. ⟨10.1016/j.crma.2015.01.014⟩
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2015, 353 (4), pp.375--379. ⟨10.1016/j.crma.2015.01.014⟩
We consider classical problems of the calculus of variations of the kind (1) I ( Ω ) : = inf { ∫ Ω f ( u , ∇ u ) d x + ∫ Γ 1 γ ( u ) d H N − 1 , u = u 0 on Γ 0 } where Ω is an open bounded subset of R N , ( Γ 0 , Γ 1 ) is a partit