Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Guy Barles"'
Publikováno v:
Communications in Partial Differential Equations. 46:547-572
We study the large-time behavior of bounded from below solutions of parabolic viscous Hamilton-Jacobi Equations in the whole space R N in the case of superquadratic Hamiltonians. Existence and uniq...
Autor:
Guy Barles, Emmanuel Chasseigne
This monograph presents the most recent developments in the study of Hamilton-Jacobi Equations and control problems with discontinuities, mainly from the viewpoint of partial differential equations. Two main cases are investigated in detail: the case
Publikováno v:
HAL
30 pages, 27 ref.; We study the large-time behavior of bounded from below solutions of parabolic viscous Hamilton-Jacobi Equations in the whole space $\mathbb{R}^N$ in the case of superquadratic Hamiltonians. Existence and uniqueness of such solution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2f357c2981b1dc70f5497a55f7c9a3e
https://hal.science/hal-02531455
https://hal.science/hal-02531455
Publikováno v:
Asymptotic Analysis
Asymptotic Analysis, IOS Press, 2019, 112 (1-2), pp.1-22. ⟨10.3233/ASY-181488⟩
Asymptotic Analysis, 2019, 112 (1-2), pp.1-22. ⟨10.3233/ASY-181488⟩
Asymptotic Analysis, IOS Press, 2019, 112 (1-2), pp.1-22. ⟨10.3233/ASY-181488⟩
Asymptotic Analysis, 2019, 112 (1-2), pp.1-22. ⟨10.3233/ASY-181488⟩
We study the large time behavior of solutions of first-order convex Hamilton-Jacobi Equations of Eikonal type $u_t+H(x,Du)=l(x),$ set in the whole space $\R^N\times [0,\infty).$ We assume that $l$ is bounded from below but may have arbitrary growth a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::13f9373ce84eccfe58986c04409a8be3
https://hal.archives-ouvertes.fr/hal-01592608v2/document
https://hal.archives-ouvertes.fr/hal-01592608v2/document
Autor:
Guy Barles, Joao Meireles
Publikováno v:
Communications in Partial Differential Equations. 41:1985-2003
In this article, we study ergodic problems in the whole space ℝm for viscous Hamilton–Jacobi equations in the case of locally Lipschitz continuous and coercive right-hand sides. We prove in particular the existence of a critical value λ* for whi
Autor:
Guy Barles, Emmanuel Chasseigne
Publikováno v:
Journal of Differential Equations. 260:7020-7031
We give a simplified proof of regularizing effects for first-order Hamilton-Jacobi Equations of the form $u_t+H(x,t,Du)=0$ in $\R^N\times(0,+\infty)$ in the case where the idea is to first estimate $u_t$. As a consequence, we have a Lipschitz regular
Publikováno v:
Mathematical Control and Related Fields
Mathematical Control and Related Fields, 2018, 8 (3-4), pp.509--533
Mathematical Control and Related Fields, AIMS, 2018, 8 (3-4), pp.509--533
HAL
Mathematical Control and Related Fields, 2018, 8 (3-4), pp.509--533
Mathematical Control and Related Fields, AIMS, 2018, 8 (3-4), pp.509--533
HAL
International audience; In this paper we focus on regional deterministic optimal control problems, i.e., problems where the dynamics and the cost functional may be different in several regions of the state space and present discontinuities at their i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39570b8224c3a42b8cd451ee2a4406b4
https://hal.science/hal-01313559v2/document
https://hal.science/hal-01313559v2/document
Autor:
Guy Barles, Emmanuel Chasseigne
Publikováno v:
Networks and Heterogeneous Media
Networks and Heterogeneous Media, 2018, 13 (2), pp.373-378. ⟨10.3934/nhm.2018016⟩
Networks and Heterogeneous Media, 2018, 13 (2), pp.373-378. ⟨10.3934/nhm.2018016⟩
The aim of this short note is: \begin{document} $(i)$ \end{document} to report an error in [ 1 ]; \begin{document} $(ii)$ \end{document} to explain why the comparison result of [ 1 ] lacks an hypothesis in the definition of subsolutions if we allow t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ea605f07c7ffd3c20b25d2ebb0a76f7
https://hal.archives-ouvertes.fr/hal-01591473v2/file/corrigendum-VF3.pdf
https://hal.archives-ouvertes.fr/hal-01591473v2/file/corrigendum-VF3.pdf
Publikováno v:
Nonlinearity
Nonlinearity, IOP Publishing, 2017, 30 (2), pp.703-734. ⟨10.1088/1361-6544/aa527f⟩
Nonlinearity, 2017, 30 (2), pp.703-734. ⟨10.1088/1361-6544/aa527f⟩
Nonlinearity, IOP Publishing, 2017, 30 (2), pp.703-734. ⟨10.1088/1361-6544/aa527f⟩
Nonlinearity, 2017, 30 (2), pp.703-734. ⟨10.1088/1361-6544/aa527f⟩
International audience; In this paper, we provide suitable adaptations of the " weak version of Bernstein method " introduced by the first author in 1991, in order to obtain Lipschitz regularity results and Lipschitz estimates for nonlinear integro-d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92a24d2e1938236d3ad21ac6e5377142
https://hal.archives-ouvertes.fr/hal-01278603/document
https://hal.archives-ouvertes.fr/hal-01278603/document
Publikováno v:
SIAM Journal on Control and Optimization. 52:1712-1744
This article is a continuation of a previous work where we studied infinite horizon control problems for which the dynamic, running cost, and control space may be different in two half-spaces of some Euclidian space $\mathbb{R}^N$. In this article we