Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Guy, Henniart"'
Autor:
Guy, Henniart, Marie-France, Vignéras
For a central division algebra $D$ of dimension $d^2$ over a finite extension $F$ of $\mathbb Q_p$ or of $\mathbb F_p((t))$, a field $R$ of characteristic prime to $p$, and an irreducible smooth $R$-representation $\pi$ of $G=GL_n(D)$, we show that f
Externí odkaz:
http://arxiv.org/abs/2305.06581
Autor:
Guy, Henniart, Marie-France, Vigneras
Let $F$ be any non archimedean locally compact field of residual characteristic $p$, let $G$ be any reductive connected $F$-group and let $K$ be any special parahoric subgroup of $G(F)$. We choose a parabolic $F$-subgroup $P$ of $G$ with Levi decompo
Externí odkaz:
http://arxiv.org/abs/1111.7276
Publikováno v:
Journal of the European Mathematical Society. 24:1471-1541
Autor:
Luis Lomelí, Guy Henniart
Publikováno v:
Journal of Number Theory. 221:247-269
Let F be a non-archimedean locally compact field. We study a class of Langlands-Shahidi pairs ( H , L ) , consisting of a quasi-split connected reductive group H over F and a Levi subgroup L which is closely related to a product of restriction of sca
Autor:
Colin J. Bushnell, Guy Henniart
Publikováno v:
Tunisian J. Math. 2, no. 2 (2020), 337-357
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\sigma$ be an irreducible smooth representation of the absolute Weil group $\Cal W_F$ of $F$ and $\sw(\sigma)$ the Swan exponent of $\sigma$. Assume $\sw(\sigma)
Autor:
Colin J. Bushnell, Guy Henniart
Publikováno v:
Compositio Mathematica. 155:1959-2038
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group $\Cal W_F$. Let $\sigma$ be an irreducible smooth complex representation of $\Cal W_F$, realized as the Langlands parameter of an irreducible cuspidal r
Autor:
Guy Henniart, Marie-France Vignéras
We investigate the irreducible cuspidal $C$-representations of a reductive $p$-adic group $G$ over a field $C$ of characteristic different from $p$. When $C$ is algebraically closed, for many groups $G$, a list of cuspidal $C$-types $(J,\lambda)$ has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68490b614ce6b804c35b0ae1b9ba4257
http://arxiv.org/abs/2010.06462
http://arxiv.org/abs/2010.06462
Publikováno v:
Journal of the American Mathematical Society. 30:495-559
Let F be a locally compact non-archimedean field, p its residue characteristic, and G a connected reductive group over F. Let C an algebraically closed field of characteristic p. We give a complete classification of irreducible admissible C-represent
Autor:
Guy Henniart, Colin J. Bushnell
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with $p\neq 2$. Let $n$ be a power of $p$ and let $G$ be an inner form of the general linear group $\text{\rm GL}_n(F)$. We give a transparent parametrization of the ir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f98b20db3cfd22b5c3bdf2b2eb28363
Publikováno v:
Algebra & Number Theory
Algebra & Number Theory, Mathematical Sciences Publishers 2018, 12 (10), pp.2327-2386. ⟨10.2140/ant.2018.12.2327⟩
Algebra Number Theory 12, no. 10 (2018), 2327-2386
Algebra & Number Theory, Mathematical Sciences Publishers 2018, 12 (10), pp.2327-2386. ⟨10.2140/ant.2018.12.2327⟩
Algebra Number Theory 12, no. 10 (2018), 2327-2386
Let $G$ be a symplectic group over a nonarchimedean local field of characteristic zero and odd residual characteristic. Given an irreducible cuspidal representation of G, we determine its Langlands parameter (equivalently, its Jordan blocks in the la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59ba29590aa82a3fe457098e109e818c