Zobrazeno 1 - 10
of 426
pro vyhledávání: '"Guy, Henniart"'
Publikováno v:
Journal of the European Mathematical Society. 24:1471-1541
Autor:
Guy, Henniart, Marie-France, Vignéras
For a central division algebra $D$ of dimension $d^2$ over a finite extension $F$ of $\mathbb Q_p$ or of $\mathbb F_p((t))$, a field $R$ of characteristic prime to $p$, and an irreducible smooth $R$-representation $\pi$ of $G=GL_n(D)$, we show that f
Externí odkaz:
http://arxiv.org/abs/2305.06581
Autor:
Christophe Breuil, Ariane Mézard
Publikováno v:
Duke Math. J. 115, no. 2 (2002), 205-310
We formulate a conjecture giving a link between the various rings parametrizing the $2$-dimensional potentially semistable $p$-adic representations of ${\rm Gal}(\overline {\mathbf {Q}}\sb p/\mathbf {Q}\sb p)$ with Hodge-Tate weights $(0,k-1)(k\in \m
Autor:
Guy, Henniart, Marie-France, Vigneras
Let $F$ be any non archimedean locally compact field of residual characteristic $p$, let $G$ be any reductive connected $F$-group and let $K$ be any special parahoric subgroup of $G(F)$. We choose a parabolic $F$-subgroup $P$ of $G$ with Levi decompo
Externí odkaz:
http://arxiv.org/abs/1111.7276
Autor:
Luis Lomelí, Guy Henniart
Publikováno v:
Journal of Number Theory. 221:247-269
Let F be a non-archimedean locally compact field. We study a class of Langlands-Shahidi pairs ( H , L ) , consisting of a quasi-split connected reductive group H over F and a Levi subgroup L which is closely related to a product of restriction of sca
Autor:
Colin J. Bushnell, Guy Henniart
Publikováno v:
Tunisian J. Math. 2, no. 2 (2020), 337-357
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\sigma$ be an irreducible smooth representation of the absolute Weil group $\Cal W_F$ of $F$ and $\sw(\sigma)$ the Swan exponent of $\sigma$. Assume $\sw(\sigma)
Autor:
Colin J. Bushnell, Guy Henniart
Publikováno v:
Compositio Mathematica. 155:1959-2038
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group $\Cal W_F$. Let $\sigma$ be an irreducible smooth complex representation of $\Cal W_F$, realized as the Langlands parameter of an irreducible cuspidal r
Autor:
Guy Henniart, Marie-France Vignéras
We investigate the irreducible cuspidal $C$-representations of a reductive $p$-adic group $G$ over a field $C$ of characteristic different from $p$. When $C$ is algebraically closed, for many groups $G$, a list of cuspidal $C$-types $(J,\lambda)$ has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68490b614ce6b804c35b0ae1b9ba4257
http://arxiv.org/abs/2010.06462
http://arxiv.org/abs/2010.06462
Publikováno v:
Journal of the American Mathematical Society. 30:495-559
Let F be a locally compact non-archimedean field, p its residue characteristic, and G a connected reductive group over F. Let C an algebraically closed field of characteristic p. We give a complete classification of irreducible admissible C-represent
Autor:
Guy Henniart, Colin J. Bushnell
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with $p\neq 2$. Let $n$ be a power of $p$ and let $G$ be an inner form of the general linear group $\text{\rm GL}_n(F)$. We give a transparent parametrization of the ir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f98b20db3cfd22b5c3bdf2b2eb28363