Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Gustavsen, Trond"'
Autor:
Gustavsen, Trond Stølen, Ile, Runar
Blowing up a rational surface singularity in a reflexive module gives a (any) partial resolution dominated by the minimal resolution. The main theorem shows how deformations of the pair (singularity, module) relates to deformations of the correspondi
Externí odkaz:
http://arxiv.org/abs/1609.01033
Externí odkaz:
https://hdl.handle.net/11250/3001408
Autor:
Eriksen, Eivind, Gustavsen, Trond S.
Publikováno v:
Proc. Estonian Acad. Sci. Phys. Math. 59 (2010), no. 4, 294-300
In this paper, we study Lie-Rinehart cohomology for quotients of singularities by finite groups, and interpret these cohomology groups in terms of integrable connection on modules.
Comment: 7 pages, LaTeX, based on a talk I gave at the AGMF Balt
Comment: 7 pages, LaTeX, based on a talk I gave at the AGMF Balt
Externí odkaz:
http://arxiv.org/abs/0812.2662
Let $k$ be an algebraically closed field of characteristic 0, let $R$ be a commutative $k$-algebra, and let $M$ be a torsion free $R$-module of rank one with a connection $\nabla$. We consider the Lie-Rinehart cohomology with values in $End_{R}(M)$ w
Externí odkaz:
http://arxiv.org/abs/0810.2926
Autor:
Yilmaz, Zuhal, Galanti, Terrie, Castle, Sarah, Gustavsen, Trond Stølen, Magiera, Marta, Strickland, Carla
Publikováno v:
Conference Papers -- Psychology of Mathematics & Education of North America; 2024, p2198-2201, 4p
Autor:
Eriksen, Eivind, Gustavsen, Trond S.
Publikováno v:
J.Pure Appl. Algebra 212 (2008), no. 7, 1561-1574
Let A be a commutative k-algebra, where k is an algebraically closed field of characteristic 0, and let M be an A-module. We consider the following question: Under what conditions on A and M is it possible to find a connection on M? We consider maxim
Externí odkaz:
http://arxiv.org/abs/math/0606638
Autor:
Eriksen, Eivind, Gustavsen, Trond S.
Publikováno v:
J. Symb. Comput. 42 (2007), no. 3, pp. 313-323
We consider the notion of a connection on a module over a commutative ring, and recall the obstruction calculus for such connections. The obstruction calculus is defined using Hochschild cohomology. However, in order to compute with Grobner bases, we
Externí odkaz:
http://arxiv.org/abs/math/0602616