Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Gustavo Perla Menzala"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 127,, Pp 1-14 (2011)
We study the uniform decay of the total energy of solutions for a system in magnetoelasticity with localized damping near infinity in an exterior 3-D domain. Using appropriate multipliers and recent work by Charao and Ikekata [3], we conclude that th
Externí odkaz:
https://doaj.org/article/379eecf88ecb4c7bad9268bfbdbd9b76
Publikováno v:
Electronic Journal of Differential Equations, Vol 2010, Iss 24,, Pp 1-13 (2010)
We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modifi
Externí odkaz:
https://doaj.org/article/0b76e50247ab4abc8556ccec5507c58d
Publikováno v:
Quarterly of Applied Mathematics. 71:183-199
We study the best possible energy decay rates for a class of linear second-order dissipative evolution equations in a Hilbert space. The models we consider are generated by a positive selfadjoint operator A A having a bounded inverse. Our discussion
Publikováno v:
Quarterly of Applied Mathematics. 69:723-746
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations. 12:198-215
We consider a linear coupled system of quasi-electrostatic equations which govern the evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the boundary, we study the uniform stabilization problem. We prove
Publikováno v:
Applicable Analysis. 76:41-49
We study the resonances (or sattering frequenaes) associated with the syutem of elastic wave equations in an unbounded region Ω which is the union of a (bounded) cavity C, an (unbounded) exterior E and a thin channel Z conneding C with E. We show th
Autor:
José Ferreira, Gustavo Perla Menzala
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 9, Iss 3, Pp 471-483 (1986)
We study the asymptotic behavior in time of the solutions of a system of nonlinear Klein-Gordon equations. We have two basic results: First, in the L∞(ℝ3) norm, solutions decay like 0(t−3/2) as t→+∞ provided the initial data are sufficientl
Externí odkaz:
https://doaj.org/article/74e5d39059b74782a5612bbbd30043be
Publikováno v:
Quarterly of Applied Mathematics. 57:181-200
We consider the dynamical von Kármán equations for viscoelastic plates under the presence of a long-range memory. We find uniform rates of decay (in time) of the energy, provided that suitable assumptions on the relaxation functions are given. Name
Autor:
Mario Davila, Gustavo Perla Menzala
Publikováno v:
NoDEA : Nonlinear Differential Equations and Applications. 5:367-382
New results on the validity of the so-called unique continuation property (UCP) for two nonlinear dispersive equations are given. We show that the UCP holds for the Benjamin-Bona-Mahony equation and Boussinesq's equation. Our strategy in both cases r
Autor:
Enrique Zuazua, Gustavo Perla Menzala
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 324:49-54
On considere le systeme de von Karman pour une plaque thermoelastique bornee et reguliere. On suppose que la plaque est encastree. On demontre des estimations explicites sur le taux de decroissance en temps des solutions, montrant que l'energie des s