Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Gustav I. Lehrer"'
Autor:
Gustav I. Lehrer, Donald E. Taylor
A complex reflection is a linear transformation which fixes each point in a hyperplane. Intuitively, it resembles the transformation an image undergoes when it is viewed through a kaleidoscope, or arrangement of mirrors. This book gives a complete cl
Publikováno v:
Representation Theory of the American Mathematical Society. 25:265-299
It is very well known that if V V is the simple 2 2 -dimensional representation of U q ( s l 2 ) \mathrm {U}_q(\mathfrak {sl}_2) , the category of representations V ⊗ r V^{\otimes r} , r = 0 , 1 , 2 , … r=0,1,2,\dots , is equivalent to the Temper
Autor:
Gustav I. Lehrer
Publikováno v:
Archiv der Mathematik. 114:631-639
We prove the following theorem. Let G be a finite group generated by unitary reflections in a complex Hermitian space $$V={\mathbb {C}}^\ell $$ and let $$G'$$ be any reflection subgroup of G. Let $${\mathcal {H}}={\mathcal {H}}(G)$$ be the space of G
Publikováno v:
European Journal of Mathematics. 6:928-976
Let $$\mathrm{U}_q({{\mathfrak {g}}})$$ be the quantum supergroup of $${\mathfrak {gl}}_{m|n}$$ or the modified quantum supergroup of $${\mathfrak {osp}}_{m|2n}$$ over the field of rational functions in q, and let $$V_q$$ be the natural module for $$
Autor:
Gustav I. Lehrer, M. J. Dyer
Publikováno v:
Journal of Pure and Applied Algebra. 222:3849-3857
Oshima's Lemma describes the orbits of parabolic subgroups of irreducible finite Weyl groups on crystallographic root systems. This note generalises that result to all root systems of finite Coxeter groups, and provides a self contained proof, indepe
Autor:
Gustav I. Lehrer, M. J. Dyer
Publikováno v:
Proceedings of the London Mathematical Society. 118:351-378
We determine a fundamental domain for the diagonal action of a finite Coxeter group $W$ on $V^{\oplus n}$, where $V$ is the reflection representation. This is used to give a stratification of $V^{\oplus n}$, which is respected by the group action, an
Publikováno v:
Advances in Mathematics. 327:4-24
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-alge
Autor:
Gustav I. Lehrer, J.J. Graham
Publikováno v:
Representation Theory of Algebraic Groups and Quantum Groups, T. Shoji, M. Kashiwara, N. Kawanaka, G. Lusztig and K. Shinoda, eds. (Tokyo: Mathematical Society of Japan, 2004)
We discuss a circle of ideas for addressing problems in representation theory using the philosophy of cellular algebras, applied to algebras described in terms of diagrams. Cellular algebras are often generically semisimple, and have non-semisimple s
Autor:
Ruibin Zhang, Gustav I. Lehrer
Publikováno v:
Mathematische Zeitschrift. 286:893-917
Given a complex orthosymplectic superspace V, the orthosymplectic Lie superalgebra \({\mathfrak {osp}}(V)\) and general linear algebra \({\mathfrak {gl}}_N\) both act naturally on the coordinate super-ring \(\mathcal {S}(N)\) of the dual space of \(V
Autor:
Gustav I. Lehrer, Ruibin Zhang
Publikováno v:
Communications in Mathematical Physics. 349:661-702
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-alge