Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Gustav Holzegel"'
Autor:
Gustav Holzegel, Arick Shao
In this paper, we consider vacuum asymptotically anti-de Sitter spacetimes $( \mathscr{M}, g )$ with conformal boundary $( \mathscr{I}, \mathfrak{g} )$. We establish a correspondence, near $\mathscr{I}$, between such spacetimes and their conformal bo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30632dd1f0524d0cbb65062d1b54bc3e
Autor:
Olivier Graf, Gustav Holzegel
Publikováno v:
Classical and Quantum Gravity. 40:045003
We prove that there are no non-stationary (with respect to the Hawking vectorfield), real mode solutions to the Teukolsky equations on all ( 3 + 1 ) -dimensional subextremal Kerr–anti-de Sitter spacetimes. We further prove that stationary solutions
Publikováno v:
Acta Math. 222, no. 1 (2019), 1-214
We prove in this paper the linear stability of the celebrated Schwarzschild family of black holes in general relativity: Solutions to the linearisation of the Einstein vacuum equations around a Schwarzschild metric arising from regular initial data r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a9507976ad6e7e7947965a636be1252e
https://projecteuclid.org/euclid.acta/1587002505
https://projecteuclid.org/euclid.acta/1587002505
Publikováno v:
Annals of PDE. 5
We prove boundedness and polynomial decay statements for solutions of the spin $$\pm \,2$$ Teukolsky equation on a Kerr exterior background with parameters satisfying $$|a|\ll M$$ . The bounds are obtained by introducing generalisations of the higher
Publikováno v:
arXiv
In an influential 1964 article, P. Lax studied $2 \times 2$ genuinely nonlinear strictly hyperbolic PDE systems (in one spatial dimension). Using the method of Riemann invariants, he showed that a large set of smooth initial data lead to bounded solu
Autor:
Gustav Holzegel
We derive an energy conservation law for the system of gravitational perturbations on the Schwarzschild spacetime expressed in a double null gauge. The resulting identity involves only first derivatives of the metric perturbation. Exploiting the gaug
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::821ab73f6cb7ace8140a24ebe2e50b0c
http://arxiv.org/abs/1602.04524
http://arxiv.org/abs/1602.04524
Autor:
Gustav Holzegel
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 24
Autor:
Gustav Holzegel, Arick Shao
We generalize our unique continuation results recently established for a class of linear and nonlinear wave equations $\Box_g \phi + \sigma \phi = \mathcal{G} ( \phi, \partial \phi )$ on asymptotically anti-de Sitter (aAdS) spacetimes to aAdS spaceti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98ed194024b86df82273aa2223805df2
Autor:
Gustav Holzegel
Publikováno v:
Adv. Theor. Math. Phys. 14, no. 5 (2010), 1245-1372
In this paper we prove the non-linear asymptotic stability of the five-dimensional Schwarzschild metric under biaxial vacuum perturbations. This is the statement that the evolution of $(SU (2) \times (U(1))$)-symmetric vacuum perturbations of initial
Publikováno v:
arXiv
In his 2007 monograph, Christodoulou proved a remarkable result giving a detailed description of shock formation, for small H[superscript s]-initial conditions (with ss sufficiently large), in solutions to the relativistic Euler equations in three sp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::101708e370e7cead5e49dac86eff20fc
http://hdl.handle.net/10044/1/29504
http://hdl.handle.net/10044/1/29504