Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Gus Lehrer"'
Autor:
Gus Lehrer, Mengfan Lyu
In this paper, we define a quotient of the cyclotomic Hecke algebra of type $G(r,1,n)$ as a generalisation of the Temperley-Lieb algebras of type $A$ and $B$. We establish a graded cellular structure for the generalised Temperley-Lieb algebra and, us
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d0e2b57bed4fe22b770f1a0307387f9
Autor:
R. B. Zhang, Gus Lehrer
Publikováno v:
Nagoya Mathematical Journal. 242:52-76
The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}
Autor:
Nicolai Reshetikhin, Alice Guionnet, John Ratcliffe, Dietmar Bisch, Hugh Woodin, Thomas Schücker, Edward Witten, Yasuyuki Kawahigashi, Gus Lehrer, Masaki Izumi, Ian Jones, Gaven Martin, C. E. Sutherland, Dimitri Shlyakhtenko, David Evans, Klaus Schmidt, Pierre de la Harpe, Michael Freedman, Arthur Jaffe, Rodney Baxter, Georges Skandalis, Robion Kirby, Fred Goodman, Roberto Longo, Masamichi Takesaki, Joan Birman, Marston Conder, Sorin Popa
Publikováno v:
Notices of the American Mathematical Society. 68:1
Publikováno v:
Mathematical Research Letters
Mathematical Research Letters, 2019, 26 (1), pp.121-158. ⟨10.4310/mrl.2019.v26.n1.a8⟩
Mathematical Research Letters, 2019, 26 (1), pp.121-158. ⟨10.4310/mrl.2019.v26.n1.a8⟩
When the parameter $q$ is a root of unity, the Temperley-Lieb algebra $\TL_n(q)$ is non-semisimple for almost all $n$. In this work, using cellular methods, we give explicit generating functions for the dimensions of all the simple $\TL_n(q)$-modules
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c10bef39d08b9eb7428ac76085cdd305
https://hal.archives-ouvertes.fr/hal-01476831v3/file/ILZ.pdf
https://hal.archives-ouvertes.fr/hal-01476831v3/file/ILZ.pdf
Publikováno v:
Journal of Algebra. 475:1-3
Autor:
Gus Lehrer, Alexandru Dimca
Publikováno v:
Springer INdAM Series ISBN: 9783319315799
Configuration Spaces
Configuration Spaces, Geometry, Combinatorics and Topology
Configuration Spaces, Geometry, Combinatorics and Topology, 2015, Cortona, Italy. pp.319-360, ⟨10.1007/978-3-319-31580-5_10⟩
Configuration Spaces
Configuration Spaces, Geometry, Combinatorics and Topology
Configuration Spaces, Geometry, Combinatorics and Topology, 2015, Cortona, Italy. pp.319-360, ⟨10.1007/978-3-319-31580-5_10⟩
We prove some general results concerning the cohomology of the Milnor fibre of a hyperplane arrangement, and apply them to the case when the arrangement has some symmetry properties, particularly the case of the set of reflecting hyperplanes of a uni
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bec7ed1481dfa3f789762c9617c127aa
https://doi.org/10.1007/978-3-319-31580-5_10
https://doi.org/10.1007/978-3-319-31580-5_10
Autor:
Anthony Henderson, Gus Lehrer
Publikováno v:
Bulletin of the London Mathematical Society. 41:515-523
Let $W$ be a Weyl group, and let $\CT_W$ be the complex toric variety attached to the fan of cones corresponding to the reflecting hyperplanes of $W$, and its weight lattice. The real locus $\CT_W(\R)$ is a smooth, connected, compact manifold with a
Autor:
Gus Lehrer
Publikováno v:
Inventiones Mathematicae. 120:411-425
Autor:
Alexandru Dimca, Gus Lehrer
Publikováno v:
Configuration Spaces, Geometry, Combinatorics and Topology
Configuration Spaces, Geometry, Combinatorics and Topology, 2011, Pisa, Italy. pp.231-253
Configuration Spaces ISBN: 9788876424304
Configuration Spaces, Geometry, Combinatorics and Topology, 2011, Pisa, Italy. pp.231-253
Configuration Spaces ISBN: 9788876424304
We investigate the interplay between the monodromy and the Deligne mixed Hodge structure on the Milnor fiber of a homogeneous polynomial. In the case of hyperplane arrangement Milnor fibers, we obtain a new result on the possible weights. For line ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::193515f65fc53cef8c36e00bdb229852
http://arxiv.org/abs/1006.3462
http://arxiv.org/abs/1006.3462
Publikováno v:
Nagoya Mathematical Journal
Nagoya Mathematical Journal, Duke University Press, 2006, 182, pp.135-170. ⟨10.1017/S0027763000026854⟩
Nagoya Mathematical Journal, 2006, 182, pp.135-170. ⟨10.1017/S0027763000026854⟩
Nagoya Math. J. 182 (2006), 135-170
Nagoya Mathematical Journal, Duke University Press, 2006, 182, pp.135-170. ⟨10.1017/S0027763000026854⟩
Nagoya Mathematical Journal, 2006, 182, pp.135-170. ⟨10.1017/S0027763000026854⟩
Nagoya Math. J. 182 (2006), 135-170
Let $G$ be a reflection group acting on a vector space $V$ and let $\gamma$ be an automorphism of $V$ normalising $G$. We study how $\gamma$ acts on invariants and covariants (for various representations) of $G$, and properties of its eigenspaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eafbb8b57f25725e89ade3aeb0cd004
http://arxiv.org/abs/math/0505087
http://arxiv.org/abs/math/0505087