Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Gur, Izzeddin"'
Autor:
Furuta, Hiroki, Lee, Kuang-Huei, Gu, Shixiang Shane, Matsuo, Yutaka, Faust, Aleksandra, Zen, Heiga, Gur, Izzeddin
Many algorithms for aligning LLMs with human preferences assume that human preferences are binary and deterministic. However, human preferences can vary across individuals, and therefore should be represented distributionally. In this work, we introd
Externí odkaz:
http://arxiv.org/abs/2409.06691
Autor:
Hron, Jiri, Culp, Laura, Elsayed, Gamaleldin, Liu, Rosanne, Adlam, Ben, Bileschi, Maxwell, Bohnet, Bernd, Co-Reyes, JD, Fiedel, Noah, Freeman, C. Daniel, Gur, Izzeddin, Kenealy, Kathleen, Lee, Jaehoon, Liu, Peter J., Mishra, Gaurav, Mordatch, Igor, Nova, Azade, Novak, Roman, Parisi, Aaron, Pennington, Jeffrey, Rizkowsky, Alex, Simpson, Isabelle, Sedghi, Hanie, Sohl-dickstein, Jascha, Swersky, Kevin, Vikram, Sharad, Warkentin, Tris, Xiao, Lechao, Xu, Kelvin, Snoek, Jasper, Kornblith, Simon
While many capabilities of language models (LMs) improve with increased training budget, the influence of scale on hallucinations is not yet fully understood. Hallucinations come in many forms, and there is no universally accepted definition. We thus
Externí odkaz:
http://arxiv.org/abs/2408.07852
Autor:
Everett, Katie, Xiao, Lechao, Wortsman, Mitchell, Alemi, Alexander A., Novak, Roman, Liu, Peter J., Gur, Izzeddin, Sohl-Dickstein, Jascha, Kaelbling, Leslie Pack, Lee, Jaehoon, Pennington, Jeffrey
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices. In this work, we propose a new perspective on pa
Externí odkaz:
http://arxiv.org/abs/2407.05872
Autor:
Singh, Avi, Co-Reyes, John D., Agarwal, Rishabh, Anand, Ankesh, Patil, Piyush, Garcia, Xavier, Liu, Peter J., Harrison, James, Lee, Jaehoon, Xu, Kelvin, Parisi, Aaron, Kumar, Abhishek, Alemi, Alex, Rizkowsky, Alex, Nova, Azade, Adlam, Ben, Bohnet, Bernd, Elsayed, Gamaleldin, Sedghi, Hanie, Mordatch, Igor, Simpson, Isabelle, Gur, Izzeddin, Snoek, Jasper, Pennington, Jeffrey, Hron, Jiri, Kenealy, Kathleen, Swersky, Kevin, Mahajan, Kshiteej, Culp, Laura, Xiao, Lechao, Bileschi, Maxwell L., Constant, Noah, Novak, Roman, Liu, Rosanne, Warkentin, Tris, Qian, Yundi, Bansal, Yamini, Dyer, Ethan, Neyshabur, Behnam, Sohl-Dickstein, Jascha, Fiedel, Noah
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often limited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go bey
Externí odkaz:
http://arxiv.org/abs/2312.06585
Language model agents (LMA) recently emerged as a promising paradigm on muti-step decision making tasks, often outperforming humans and other reinforcement learning agents. Despite the promise, their performance on real-world applications that often
Externí odkaz:
http://arxiv.org/abs/2311.18751
Autor:
Freeman, C. Daniel, Culp, Laura, Parisi, Aaron, Bileschi, Maxwell L, Elsayed, Gamaleldin F, Rizkowsky, Alex, Simpson, Isabelle, Alemi, Alex, Nova, Azade, Adlam, Ben, Bohnet, Bernd, Mishra, Gaurav, Sedghi, Hanie, Mordatch, Igor, Gur, Izzeddin, Lee, Jaehoon, Co-Reyes, JD, Pennington, Jeffrey, Xu, Kelvin, Swersky, Kevin, Mahajan, Kshiteej, Xiao, Lechao, Liu, Rosanne, Kornblith, Simon, Constant, Noah, Liu, Peter J., Novak, Roman, Qian, Yundi, Fiedel, Noah, Sohl-Dickstein, Jascha
We introduce and study the problem of adversarial arithmetic, which provides a simple yet challenging testbed for language model alignment. This problem is comprised of arithmetic questions posed in natural language, with an arbitrary adversarial str
Externí odkaz:
http://arxiv.org/abs/2311.07587
Autor:
Wortsman, Mitchell, Liu, Peter J., Xiao, Lechao, Everett, Katie, Alemi, Alex, Adlam, Ben, Co-Reyes, John D., Gur, Izzeddin, Kumar, Abhishek, Novak, Roman, Pennington, Jeffrey, Sohl-dickstein, Jascha, Xu, Kelvin, Lee, Jaehoon, Gilmer, Justin, Kornblith, Simon
Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific
Externí odkaz:
http://arxiv.org/abs/2309.14322
Autor:
Gur, Izzeddin, Furuta, Hiroki, Huang, Austin, Safdari, Mustafa, Matsuo, Yutaka, Eck, Douglas, Faust, Aleksandra
Pre-trained large language models (LLMs) have recently achieved better generalization and sample efficiency in autonomous web automation. However, the performance on real-world websites has still suffered from (1) open domainness, (2) limited context
Externí odkaz:
http://arxiv.org/abs/2307.12856
Autor:
Furuta, Hiroki, Lee, Kuang-Huei, Nachum, Ofir, Matsuo, Yutaka, Faust, Aleksandra, Gu, Shixiang Shane, Gur, Izzeddin
The progress of autonomous web navigation has been hindered by the dependence on billions of exploratory interactions via online reinforcement learning, and domain-specific model designs that make it difficult to leverage generalization from rich out
Externí odkaz:
http://arxiv.org/abs/2305.11854
Autor:
Krishnan, Srivatsan, Jaques, Natasha, Omidshafiei, Shayegan, Zhang, Dan, Gur, Izzeddin, Reddi, Vijay Janapa, Faust, Aleksandra
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g.,
Externí odkaz:
http://arxiv.org/abs/2211.16385