Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Guohui Ruan"'
Autor:
Tsz Hei Fong, Wangpan Shi, Guohui Ruan, Siyi Li, Guanghui Liu, Leyun Yang, Kaibin Wu, Jingxian Fan, Chung Lam Ng, Yafang Hu, Haishan Jiang
Publikováno v:
iScience, Vol 26, Iss 10, Pp 107858- (2023)
Summary: The conventional confirmation tests of tuberculous meningitis (TBM) are usually low in sensitivity, leading to high TBM mortality. Hence, sensitive methods for indicating the presence of bacilli are required. Tuberculostearic acid (TBSA), a
Externí odkaz:
https://doaj.org/article/2922e96df6d64405ad9b5b2705b954f7
Autor:
Guohui Ruan, Jiaming Liu, Ziqi An, Kaiibin Wu, Chuanjun Tong, Qiang Liu, Ping Liang, Zhifeng Liang, Wufan Chen, Xinyuan Zhang, Yanqiu Feng
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
Skull stripping is an initial and critical step in the pipeline of mouse fMRI analysis. Manual labeling of the brain usually suffers from intra- and inter-rater variability and is highly time-consuming. Hence, an automatic and efficient skull-strippi
Externí odkaz:
https://doaj.org/article/12da4554f7154e829cc6b448da1fc2c4
Autor:
Ziqi An, Yanqiu Feng, Chuanjun Tong, Kaiibin Wu, Jiaming Liu, Zhifeng Liang, Xinyuan Zhang, Qiang Liu, Ping Liang, Guohui Ruan, Wufan Chen
Skull stripping is an initial and critical step in the pipeline of mouse fMRI analysis. Manual labeling of the brain usually suffers from intra- and inter-rater variability and is highly time-consuming. Hence, an automatic and efficient skull-strippi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4f68495f6b8ef9d71b35b66798ca5ae2
https://doi.org/10.1101/2021.10.08.462356
https://doi.org/10.1101/2021.10.08.462356
Autor:
Qianjin Feng, Qianqian Zhang, Kaixuan Zhao, Yilong Liu, Wufan Chen, Guohui Ruan, Ed X. Wu, Yanqiu Feng, Wei Yang
Publikováno v:
Magnetic Resonance in Medicine. 82:2133-2145
Purpose To develop a machine learning approach using convolutional neural network for reducing MRI Gibbs-ringing artifact. Theory and methods Gibbs-ringing artifact in MR images is caused by insufficient sampling of the high frequency data. Existing