Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Guo Qianqiao"'
Autor:
Bartsch Thomas, Guo Qianqiao
Publikováno v:
Advanced Nonlinear Studies, Vol 17, Iss 1, Pp 55-85 (2017)
The paper is concerned with the slightly subcritical elliptic problem with Hardy-critical term
Externí odkaz:
https://doaj.org/article/5f2116fb8eae4800b449fe25d098fe0b
Autor:
Bartsch, Thomas, Guo, Qianqiao
Publikováno v:
Partial Differ. Equ. Appl. 1 (2020), no. 5, Paper no. 26, 21 pp
We study the possible blow-up behavior of solutions to the slightly subcritical elliptic problem with Hardy term \[ \left\{ \begin{aligned} -\Delta u-\mu\frac{u}{|x|^2} &= |u|^{2^{\ast}-2-\varepsilon}u &&\quad \text{in } \Omega, \\\ u &= 0&&\quad \te
Externí odkaz:
http://arxiv.org/abs/2301.04928
Autor:
Bartsch, Thomas, Guo, Qianqiao
Publikováno v:
Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 1801-1818
We consider the slightly subcritical elliptic problem with Hardy term $$ \left\{ \begin{aligned} -\Delta u-\mu\frac{u}{|x|^2} &= |u|^{2^{\ast}-2-\epsilon}u &&\quad \text{in } \Omega\subset\mathbb{R}^N, \\\ u &= 0&&\quad \text{on } \partial \Omega, \e
Externí odkaz:
http://arxiv.org/abs/2301.04911
Autor:
Ye, Zhenglin, Guo, Qianqiao
In this paper, some sufficient conditions for the differentiability of the $n$-variable real-valued function are obtained, which are given based on the differentiability of the $n-1$-variable real-valued function and are weaker than classical conditi
Externí odkaz:
http://arxiv.org/abs/2106.13581
Autor:
Guo, Qianqiao, Wang, Xiaodong
We prove some uniqueness results for positive harmonic functions on the unit ball satisfying a nonlinear boundary condition
Comment: typos corrected
Comment: typos corrected
Externí odkaz:
http://arxiv.org/abs/1912.05568
We prove some Liouville type theorems on smooth compact Riemannian manifolds with nonnegative sectional curvature and strictly convex boundary. This gives a nonlinear generalization in low dimension of the recent sharp lower bound of the first Steklo
Externí odkaz:
http://arxiv.org/abs/1912.05574
This is the continuation of our previous work [5], where we introduced and studied some nonlinear integral equations on bounded domains that are related to the sharp Hardy-Littlewood-Sobolev inequality. In this paper, we introduce some nonlinear inte
Externí odkaz:
http://arxiv.org/abs/1904.03878
Autor:
Guo, Qianqiao
Consider the integral equation \begin{equation*} f^{q-1}(x)=\int_\Omega\frac{f(y)}{|x-y|^{n-\alpha}}dy,\ \ f(x)>0,\quad x\in \overline \Omega, \end{equation*} where $\Omega\subset \mathbb{R}^n$ is a smooth bounded domain. For $1<\alpha
Externí odkaz:
http://arxiv.org/abs/1808.08723
In this paper we establish the reversed sharp Hardy-Littlewood-Sobolev (HLS for short) inequality on the upper half space and obtain a new HLS type integral inequality on the upper half space (extending an inequality found by Hang, Wang and Yan in \c
Externí odkaz:
http://arxiv.org/abs/1610.05835
Autor:
Guo, Qianqiao, Hu, Yunyun
In this paper, we consider the existence of nodal solutions with two bubbles to the slightly subcritical problem with the fractional Laplacian \begin{equation*} \left\{\aligned &(-\Delta)^su=|u|^{p-1-\varepsilon}u\ \ \mbox{in}\ \Omega &u=0\ \mbox{on}
Externí odkaz:
http://arxiv.org/abs/1602.06102