Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Guo, Bangwei"'
In digital pathology tasks, transformers have achieved state-of-the-art results, surpassing convolutional neural networks (CNNs). However, transformers are usually complex and resource intensive. In this study, we developed a novel and efficient digi
Externí odkaz:
http://arxiv.org/abs/2305.01968
NLP-based computer vision models, particularly vision transformers, have been shown to outperform CNN models in many imaging tasks. However, most digital pathology artificial-intelligence models are based on CNN architectures, probably owing to a lac
Externí odkaz:
http://arxiv.org/abs/2302.10406
Autor:
Liu, Anran, Li, Xingyu, Wu, Hongyi, Guo, Bangwei, Jonnagaddala, Jitendra, Zhang, Hong, Xu, Xu Steven
Purpose Tumor-infiltrating lymphocytes (TILs) have significant prognostic values in cancers. However, very few automated, deep-learning-based TIL scoring algorithms have been developed for colorectal cancers (CRC). Methods We developed an automated,
Externí odkaz:
http://arxiv.org/abs/2208.11518
Artificial intelligence (AI) models have been developed for predicting clinically relevant biomarkers, including microsatellite instability (MSI), for colorectal cancers (CRC). However, the current deep-learning networks are data-hungry and require l
Externí odkaz:
http://arxiv.org/abs/2208.10495
Deep-learning models based on whole-slide digital pathology images (WSIs) become increasingly popular for predicting molecular biomarkers. Instance-based models has been the mainstream strategy for predicting genetic alterations using WSIs although b
Externí odkaz:
http://arxiv.org/abs/2206.00455
Publikováno v:
In The American Journal of Pathology December 2023 193(12):2122-2132
Publikováno v:
In Computerized Medical Imaging and Graphics April 2023 105
Publikováno v:
JCO Clinical Cancer Informatics; 12/1/2024, Vol. 8, p1-10, 10p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.