Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Guler, Hakan"'
Autor:
Guler, Hakan
We study the bar-and-joint frameworks in $\mathbb{R}^2$ such that some vertices are constrained to lie on some lines. The generic rigidity of such frameworks is characterised by Streinu and Theran (2010). Katoh and Tanigawa (2013) remarked that the c
Externí odkaz:
http://arxiv.org/abs/2110.00063
Autor:
Guler, Hakan, Jackson, Bill
Fekete, Jord\'an and Kaszanitzky [4] characterised the graphs which can be realised as 2-dimensional, infinitesimally rigid, bar-joint frameworks in which two given vertices are coincident. We formulate a conjecture which would extend their character
Externí odkaz:
http://arxiv.org/abs/2106.06767
A bar-joint framework $(G,p)$ in $\mathbb{R}^d$ is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of $\mathbb{R}^d$. It is known that, when $(G,p)$ is generic, its rigidity depends only on the underl
Externí odkaz:
http://arxiv.org/abs/2003.06648
Autor:
Guler, Hakan
A d-dimensional (bar-and-joint) framework is a pair (G; p) where G = (V;E) is a graph and p : V > Rd is a function which is called the realisation of the framework (G; p). A motion of a framework (G; p) is a continuous function P : [0; 1] x V > Rd wh
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.766124
A linearly constrained framework in $\mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. I
Externí odkaz:
http://arxiv.org/abs/1906.10926
Autor:
Guler, Hakan
Publikováno v:
In Discrete Applied Mathematics 15 February 2023 326:37-46
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $\mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. The
Externí odkaz:
http://arxiv.org/abs/1804.00411
Autor:
Jackson, Bill, Guler, Hakan
A graph $G=(V,E)$ is $d$-sparse if each subset $X\subseteq V$ with $|X|\geq d$ induces at most $d|X|-{{d+1}\choose{2}}$ edges in $G$. Maxwell showed in 1864 that a necessary condition for a generic bar-and-joint framework with at least $d+1$ vertices
Externí odkaz:
http://arxiv.org/abs/1104.4415
Autor:
Guler, Hakan1 (AUTHOR) hakanguler19@gmail.com, Jackson, Bill2 (AUTHOR)
Publikováno v:
Graphs & Combinatorics. Aug2022, Vol. 38 Issue 4, p1-28. 28p.