Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Guixiang Hong"'
Publikováno v:
Journal of Fourier Analysis and Applications. 29
In this paper, we study the quantitative weighted bounds for the $q$-variational singular integral operators with rough kernels. The main result is for the sharp truncated singular integrals itself $$ \|V_q\{T_{\Omega,\varepsilon}\}_{\varepsilon>0}\|
Publikováno v:
Journal of the London Mathematical Society.
Publikováno v:
Mathematische Annalen. 386:375-414
In this paper, we study the boundedness theory for maximal Calder\'on-Zygmund operators acting on noncommutative $L_p$-spaces. Our first result is a criterion for the weak type $(1,1)$ estimate of noncommutative maximal Calder\'on-Zygmund operators;
Autor:
Yanping Chen, Guixiang Hong
Publikováno v:
The Journal of Geometric Analysis. 33
Publikováno v:
Science China Mathematics. 64:2437-2460
In this paper, starting with a relatively simple observation that the variational estimates of the commutators of the standard Calder\'on-Zygmund operators with the BMO functions can be deduced from the weighted variational estimates of the standard
Publikováno v:
International Mathematics Research Notices.
Let $\mathcal {M}$ be a von Neumann algebra equipped with a normal semifinite faithful trace $\tau $, and $H_{p}(\mathbb {R},\,\mathcal {M}) (1\leq p
Publikováno v:
Archiv der Mathematik. 115:423-433
Recently, the authors have established $$L^p$$ -boundedness of vector-valued q-variational inequalities for averaging operators which take values in the Banach space satisfying the martingale cotype q property in Hong and Ma (Math Z 286(1–2):89–1
Publikováno v:
Duke Mathematical Journal
Duke Mathematical Journal, Duke University Press, 2021, 170 (2), ⟨10.1215/00127094-2020-0034⟩
Duke Math. J. 170, no. 2 (2021), 205-246
Duke Mathematical Journal, Duke University Press, 2021, 170 (2), ⟨10.1215/00127094-2020-0034⟩
Duke Math. J. 170, no. 2 (2021), 205-246
This paper is devoted to the study of noncommutative maximal inequalities and ergodic theorems for group actions on von Neumann algebras. Consider a locally compact group $G$ of polynomial growth with a symmetric compact subset $V$. Let $\alpha $ be
Publikováno v:
Journal of Functional Analysis. 282:109281
In this paper, we study existence of isometric embedding of S q m into S p n , where 1 ≤ p ≠ q ≤ ∞ and n ≥ m ≥ 2 . We show that for all n ≥ m ≥ 2 if there exists a linear isometry from S q m into S p n , where ( q , p ) ∈ ( 1 , ∞