Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Guillermo Villarino"'
Publikováno v:
International Journal of Computational Intelligence Systems, Vol 12, Iss 1 (2019)
Traditionally, the last step of edge detection algorithms, which is called scaling-evaluation, produces the final output classifying each pixel as edge or nonedge. This last step is usually done based on local evaluation methods. The local evaluation
Externí odkaz:
https://doaj.org/article/cf888e6d2b6444eda0aa0de42f9d00ea
Publikováno v:
Policy Studies. 43:1096-1111
E-government offers opportunities for improving the interactions between citizens, governmental and public institutions, private sector organizations, and public employees. Despite this, the take-u...
Publikováno v:
Soft Computing. 22:5121-5146
Most supervised classification algorithms produce a soft score (either a probability, a fuzzy degree, a possibility, a cost, etc.) assessing the strength of the association between items and classes. After that, each item is assigned to the class wit
Publikováno v:
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783030501525
IPMU (3)
IPMU (3)
Text mining and topic identification models are becoming increasingly relevant to extract value from the huge amount of unstructured textual information that companies obtain from their users and clients nowadays. Soft approaches to these problems ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f1484f201848cc7f896fb609bcf21ad7
https://doi.org/10.1007/978-3-030-50153-2_5
https://doi.org/10.1007/978-3-030-50153-2_5
Publikováno v:
E-Prints Complutense. Archivo Institucional de la UCM
instname
Scopus-Elsevier
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
EUSFLAT Conf.
instname
Scopus-Elsevier
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
EUSFLAT Conf.
Most edge detection algorithms deal only with grayscale images, and the way of adapting them to use with RGB images is an open problem. In this work, we explore different ways of aggregating the color information of a RGB image for edges extraction,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9438da967f9ac6207cb71c0e0240452
https://eprints.ucm.es/id/eprint/63642/1/125914823.pdf
https://eprints.ucm.es/id/eprint/63642/1/125914823.pdf
Publikováno v:
E-Prints Complutense. Archivo Institucional de la UCM
instname
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
International Journal of Computational Intelligence Systems, Vol 12, Iss 1 (2019)
instname
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
International Journal of Computational Intelligence Systems, Vol 12, Iss 1 (2019)
Traditionally, the last step of edge detection algorithms, which is called scaling-evaluation, produces the final output classifying each pixel as edge or nonedge. This last step is usually done based on local evaluation methods. The local evaluation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3990fec7282a8592d060e111061fe7e0
https://eprints.ucm.es/63017/
https://eprints.ucm.es/63017/
Publikováno v:
ISKE
Edge detection problems try to identify those pixels that represent the boundaries of the objects in an image. The process for getting a solution is usually organized in several steps, producing at the end a set of pixels that could be edges (candida
Publikováno v:
Advances in Fuzzy Logic and Technology 2017 ISBN: 9783319668260
EUSFLAT/IWIFSGN (3)
EUSFLAT/IWIFSGN (3)
The aim of supervised classification algorithms is to assign objects/items to known classes. Before carrying out the final assignment, many classification algorithms obtain a soft score (probability, fuzzy, possibility, cost...) between each item and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::55c6cb6230011142f1fb38a99f40f1d9
https://doi.org/10.1007/978-3-319-66827-7_48
https://doi.org/10.1007/978-3-319-66827-7_48