Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Guillermo Ortiz-Jimenez"'
Driven by massive amounts of data and important advances in computational resources, new deep learning systems have achieved outstanding results in a large spectrum of applications. Nevertheless, our current theoretical understanding on the mathemati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7c29e892ff397982cf8195876902903
http://arxiv.org/abs/2010.09624
http://arxiv.org/abs/2010.09624
Autor:
Guillermo Ortiz-Jimenez, Hermina Petric Maretic, Mireille El Gheche, Pascal Frossard, Effrosyni Simou
Publikováno v:
ICASSP
Optimal transport aims to estimate a transportation plan that minimizes a displacement cost. This is realized by optimizing the scalar product between the sought plan and the given cost, over the space of doubly stochastic matrices. When the entropy
Publikováno v:
ICASSP
Seminal works on graph neural networks have primarily targeted semi-supervised node classification problems with few observed labels and high-dimensional signals. With the development of graph networks, this setup has become a de facto benchmark for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::318e56950702de8aee290864c580c250
http://arxiv.org/abs/1911.05384
http://arxiv.org/abs/1911.05384
Autor:
Rafael Pagés, Federico Garcia-Rial, Luis Ubeda-Medina, Guillermo Ortiz-Jimenez, Jesus Grajal, Narciso Garcia
Publikováno v:
IEEE Transactions on teraHertz Science and Technology, ISSN 2156-342X, 2017, Vol. 7, No. 4
Archivo Digital UPM
Universidad Politécnica de Madrid
Archivo Digital UPM
Universidad Politécnica de Madrid
We present a simulation framework for a 3-D high-resolution imaging radar at 300 GHz with mechanical scanning. This tool allows us to reproduce the imaging capabilities of the radar in different setups and with different targets. The simulations are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c7ed3d54536202618771ea11e82d213
https://oa.upm.es/50818/
https://oa.upm.es/50818/
Publikováno v:
IEEE Transactions on Signal Processing, 67(12)
We consider the problem of designing sparse sampling strategies for multidomain signals, which can be represented using tensors that admit a known multilinear decomposition. We leverage the multidomain structure of tensor signals and propose to acqui
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0595057073ee592f3902b38eded84940
https://infoscience.epfl.ch/record/266851
https://infoscience.epfl.ch/record/266851