Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Guillermo Matera"'
Publikováno v:
Journal of Symbolic Computation. 109:31-49
In the area of symbolic-numerical computation within computer algebra, an interesting question is how “close” a random input is to the “critical” ones. Examples are the singular matrices in linear algebra or the polynomials with multiple root
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
This paper deals with properties of the algebraic variety defined as the set of zeros of a "typical" sequence of polynomials. We consider various types of "nice" varieties: set-theoretic and ideal-theoretic complete intersections, absolutely irreduci
Autor:
Ezequiel Dratman, Guillermo Matera
Publikováno v:
Linear Algebra and its Applications. 551:57-82
We obtain new bounds for the entries of the inverse of a diagonally-dominant tridiagonal matrix which improve the best previous ones, due to H.-B. Li et al. We apply our bounds to the tridiagonal matrices arising in the second-order finite-difference
Publikováno v:
The Quarterly Journal of Mathematics. 68:1227-1246
We estimate the density of tubes around the algebraic variety of decomposable univariate polynomials over the real and the complex numbers.
Autor:
Guillermo Matera, Nardo Giménez
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We describe and analyze a randomized algorithm which solves a polynomial system over the rationals defined by a reduced regular sequence outside a given hypersurface. We show that its bit complexity is roughly quadratic in the Bézout number of the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d1d35edd6a29ee9061d563bc2382b74
https://www.sciencedirect.com/science/article/pii/S0885064X18300761
https://www.sciencedirect.com/science/article/pii/S0885064X18300761
We estimate the number |Aλ| of elements on a nonlinear family A of monic polynomials of Fq [T ] of degree r having factorization pattern λ := 1λ1 2λ2 ...rλr . We show that |Aλ| = T (λ) qr−m + O(qr−m−1/2), where T (λ) is the proportion o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2da94e702065c7f11fe7268396f4118c
https://link.springer.com/article/10.1007/s10801-018-0869-4
https://link.springer.com/article/10.1007/s10801-018-0869-4
Publikováno v:
Journal of Number Theory. 158:54-72
Let V ⊂ P n ( F ‾ q ) be a complete intersection defined over a finite field F q of dimension r and singular locus of dimension at most 0 ≤ s ≤ r − 2 . We obtain an explicit version of the Hooley–Katz estimate | | V ( F q ) | − p r | =
Publikováno v:
Finite Fields and Their Applications. 31:42-83
Let V ⊂ double-struck Pn(double-struck F¯q) be a complete intersection defined over a finite field double-struck Fq of dimension r and singular locus of dimension at most s, and let π :V → double-struck Ps+1 (double-struck F¯q) be a generic li
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We obtain estimates on the number $|\mathcal{A}_{\boldsymbol{\lambda}}|$ of elements on a linear family $\mathcal{A}$ of monic polynomials of $\mathbb{F}_q[T]$ of degree $n$ having factorization pattern $\boldsymbol{\lambda}:=1^{\lambda_1}2^{\lambda_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59f80f4cd9e5b409e679c6a54f9ac743
https://link.springer.com/article/10.1007/s00493-015-3330-5
https://link.springer.com/article/10.1007/s00493-015-3330-5
Publikováno v:
Foundations of Computational Mathematics. 15:159-184
Let V be a smooth equidimensional quasi-affine variety of dimension r over the complex numbers $C$ and let $F$ be a $(p\times s)$-matrix of coordinate functions of $C[V]$, where $s\ge p+r$. The pair $(V,F)$ determines a vector bundle $E$ of rank $s-p