Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Guillermo Alesandroni"'
Autor:
Guillermo Alesandroni
Publikováno v:
Examples and Counterexamples, Vol 3, Iss , Pp 100095- (2023)
Let ℱ be a finite nonempty family of finite nonempty sets. We prove the following: (1) ℱ satisfies the condition of the title if and only if for every pair of distinct subfamilies {A1,…,Ar}, {B1,…,Bs}of ℱ, ⋃i=1rAi≠⋃i=1sBi. (2) If ℱ
Externí odkaz:
https://doaj.org/article/2db15ccda58c4aaca3d80fe901703251
Autor:
Guillermo Alesandroni
Publikováno v:
Discrete Mathematics. 344:112401
Generalizing the concept of dense hypergraph, we say that a hypergraph with n edges is weakly dense, if no k in the half-open interval [ 2 , n ) is the degree of more than k 2 vertices. In our main result, we prove the famous Erdős–Faber–Lovasz
Autor:
Guillermo Alesandroni
Publikováno v:
Journal of Pure and Applied Algebra. 221:780-798
We introduce new classes of monomial ideals: dominant, p-semidominant, and GNP ideals. The families of dominant and 1-semidominant ideals extend those of complete and almost complete intersections, while the family of GNP ideals extends that of gener
Autor:
Guillermo Alesandroni
We express the multigraded Betti numbers of monomial ideals in four variables in terms of the multigraded Betti numbers of 66 squarefree monomial ideals, also in four variables. We use this class of 66 ideals to prove that monomial resolutions in fou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::188f643fb9716c26115131efdc29f87f
http://arxiv.org/abs/1905.01151
http://arxiv.org/abs/1905.01151
Autor:
Guillermo Alesandroni
Publikováno v:
Journal of Algebra and Its Applications. 2019
Repositorio Institucional (UCA)
Pontificia Universidad Católica Argentina
instacron:UCA
Repositorio Institucional (UCA)
Pontificia Universidad Católica Argentina
instacron:UCA
Denote by [Formula: see text] a polynomial ring over a field, and let [Formula: see text] be a monomial ideal of [Formula: see text]. If [Formula: see text], we prove that the multiplicity of [Formula: see text] is given by [Formula: see text] On the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4de3d0ad701fffebab7e1df56245291
https://repositorio.uca.edu.ar/handle/123456789/9747
https://repositorio.uca.edu.ar/handle/123456789/9747
Autor:
Guillermo Alesandroni
Let S be a polynomial ring in n variables, over an arbitrary field. Let M be the family of all monomial ideals in S. Using combinatorial methods, we give an explicit characterization of all M ∈ M , such that pd ( S / M ) = n . In addition, we give
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c59af2caae8b4987c59e3276d9c39d0e
http://arxiv.org/abs/1710.05124
http://arxiv.org/abs/1710.05124
Autor:
Guillermo Alesandroni
We express the multigraded Betti numbers of an arbitrary monomial ideal in terms of the multigraded Betti numbers of two basic classes of ideals. This decomposition has multiple applications. In some concrete cases, we use it to construct minimal res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0419072ee8b96cc722c6145c6a920323
http://arxiv.org/abs/1706.06572
http://arxiv.org/abs/1706.06572