Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Guillem Ramirez-Gargallo"'
Autor:
Carlos Puerto-Santana, Concha Bielza, Javier Diaz-Rozo, Guillem Ramirez-Gargallo, Filippo Mantovani, Gaizka Virumbrales, Jesus Labarta, Pedro Larranaga
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
IEEE Internet of Things Journal, ISSN 2327-4662, 2022-10, Vol. 9, No. 20
Universitat Politècnica de Catalunya (UPC)
IEEE Internet of Things Journal, ISSN 2327-4662, 2022-10, Vol. 9, No. 20
The degradation of critical components inside large industrial assets, such as ball-bearings, has a negative impact on production facilities, reducing the availability of assets due to an unexpectedly high failure rate. Machine learning- based monito
Autor:
David Vicente, Joan Vinyals, Guillem Ramirez-Gargallo, Filippo Mantovani, Fabio Banchelli, Marta Garcia-Gasulla, Kilian Peiro
Publikováno v:
2021 IEEE International Conference on Cluster Computing (CLUSTER)
CLUSTER
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
CLUSTER
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Clusters of emerging technologies are appearing with more and more frequency in HPC. After years of skepticism, data-centers are adopting them as production systems thanks to several geopolitical and technological factors. The most honorable example
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a07e25d9d23d5ade329d74a4ac93921
https://hdl.handle.net/2117/357083
https://hdl.handle.net/2117/357083
Autor:
Marta Garcia-Gasulla, Fabio Banchelli, Filippo Mantovani, Ismaïl Ben Hassan Saïdi, Ivan Spisso, Kilian Peiro, Guillaume Houzeaux, Guillem Ramirez-Gargallo, Christian Tenaud
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
International Journal of Computational Fluid Dynamics
International Journal of Computational Fluid Dynamics, Taylor & Francis, 2020, 34 (7-8), pp.508-528. ⟨10.1080/10618562.2020.1778168⟩
HAL
International Journal of Computational Fluid Dynamics, Taylor & Francis, 2020, 34, pp.508-528
Universitat Politècnica de Catalunya (UPC)
International Journal of Computational Fluid Dynamics
International Journal of Computational Fluid Dynamics, Taylor & Francis, 2020, 34 (7-8), pp.508-528. ⟨10.1080/10618562.2020.1778168⟩
HAL
International Journal of Computational Fluid Dynamics, Taylor & Francis, 2020, 34, pp.508-528
For complex engineering and scientific applications, Computational Fluid Dynamics (CFD) simulations require a huge amount of computational power. As such, it is of paramount importance to carefully assess the performance of CFD codes and to study the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a5f88e29a26de6e3d67097e4f9e7b9b
https://hdl.handle.net/2117/345955
https://hdl.handle.net/2117/345955
Autor:
Andrea Querol, Guillem Ramirez-Gargallo, Marta Garcia-Gasulla, Joan Vinyals, Filippo Mantovani, Kilian Peiro, Pablo Vizcaino, Fabio Banchelli, Guillem Ramirez-Miranda
Publikováno v:
2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)
PDP
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
PDP
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
HPC systems and parallel applications are increasing their complexity. Therefore the possibility of easily study and project at large scale the performance of scientific applications is of paramount importance. In this paper we describe a performance
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::999bd0125bb3d13fd687a535af3f4987
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
CCGRID
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
CCGRID
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
The recent rapid growth of the data-flow programming paradigm enabled the development of specific architectures, e.g., for machine learning. The most known example is the Tensor Processing Unit (TPU) by Google. Standard data-centers, however, still c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3fd98e5f7e9975663e31f2bc8c4a41f2
http://hdl.handle.net/2117/131762
http://hdl.handle.net/2117/131762