Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Guillaume Poly"'
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2020, 25, paper no. 74, 20 pp. ⟨10.1214/20-EJP481⟩
Electron. J. Probab.
Electronic Journal of Probability, 2020, 25, paper no. 74, 20 pp. ⟨10.1214/20-EJP481⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2020, 25, paper no. 74, 20 pp. ⟨10.1214/20-EJP481⟩
Electron. J. Probab.
Electronic Journal of Probability, 2020, 25, paper no. 74, 20 pp. ⟨10.1214/20-EJP481⟩
We provide a simple abstract formalism of integration by parts under which we obtain some regularization lemmas. These lemmas apply to any sequence of random variables $(F_n)$ which are smooth and non-degenerated in some sense and enable one to upgra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5d5f2efc46ae8835307224ae60b5d27
https://hal.archives-ouvertes.fr/hal-02429512/file/RegLemmaVar-18-09-2019.pdf
https://hal.archives-ouvertes.fr/hal-02429512/file/RegLemmaVar-18-09-2019.pdf
Autor:
Guillaume Poly, Jürgen Angst
Publikováno v:
Annals of Probability
Annals of Probability, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Ann. Probab. 48, no. 5 (2020), 2145-2175
Annals of Probability, Institute of Mathematical Statistics, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Annals of Probability, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
Ann. Probab. 48, no. 5 (2020), 2145-2175
Annals of Probability, Institute of Mathematical Statistics, 2020, 48 (5), pp.2145-2175. ⟨10.1214/19-AOP1418⟩
International audience; We study the absolute continuity with respect to the Lebesgue measure of the distribution of the nodal volume associated with a smooth, non-degenerated and stationary Gaussian field $(f(x), {x \in \mathbb R^d})$. Under mild co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2a3cc4ee31109e4d852982779d37a40
https://hal.science/hal-02359411
https://hal.science/hal-02359411
Autor:
Jürgen Angst, Guillaume Poly
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, 2022, 7, pp.4931-4968. ⟨10.1093/imrn/rnaa201⟩
International Mathematics Research Notices, 2022, 7, pp.4931-4968. ⟨10.1093/imrn/rnaa201⟩
In this paper, we investigate the local universality of the number of zeros of a random periodic signal of the form $S_n(t)=\sum_{k=1}^n a_k f(k t)$, where $f$ is a $2\pi-$periodic function satisfying weak regularity conditions and where the coeffici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c3cec76a90e2762ef5908c417cac3f4
http://arxiv.org/abs/1910.07469
http://arxiv.org/abs/1910.07469
Autor:
Guillaume Poly, Guangqu Zheng
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2019, 147 (9), pp.4055-4065. ⟨10.1090/proc/14557⟩
Proceedings of the American Mathematical Society, 2019, 147 (9), pp.4055-4065. ⟨10.1090/proc/14557⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2019, 147 (9), pp.4055-4065. ⟨10.1090/proc/14557⟩
Proceedings of the American Mathematical Society, 2019, 147 (9), pp.4055-4065. ⟨10.1090/proc/14557⟩
We present several new phenomena about almost sure convergence on homogeneous chaoses that include Gaussian Wiener chaos and homogeneous sums in independent random variables. Concretely, we establish the fact that almost sure convergence on a fixed f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6df21ea1700e42910ac10c063721a78
https://hal.archives-ouvertes.fr/hal-01987898
https://hal.archives-ouvertes.fr/hal-01987898
Publikováno v:
Probability Theory and Related Fields
Probability Theory and Related Fields, Springer Verlag, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
Probability Theory and Related Fields, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
Probability Theory and Related Fields, Springer Verlag, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
Probability Theory and Related Fields, 2019, 174 (3-4), pp.887-927. ⟨10.1007/s00440-018-0869-2⟩
In this article, we consider the following family of random trigonometric polynomials $$p_n(t,Y)=\sum _{k=1}^n Y_{k}^1 \cos (kt)+Y_{k}^2\sin (kt)$$ for a given sequence of i.i.d. random variables $$Y^i_{k}$$ , $$i\in \{1,2\}$$ , $$k\ge 1$$ , which ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b5c6a0e6fef1a5d9af5f62c4008f5d2
https://hal.archives-ouvertes.fr/hal-01634848
https://hal.archives-ouvertes.fr/hal-01634848
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2018, 23, paper 45, 51 p. ⟨10.1214/18-EJP174⟩
Electron. J. Probab.
Electronic Journal of Probability, 2018, 23, paper 45, 51 p. ⟨10.1214/18-EJP174⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2018, 23, paper 45, 51 p. ⟨10.1214/18-EJP174⟩
Electron. J. Probab.
Electronic Journal of Probability, 2018, 23, paper 45, 51 p. ⟨10.1214/18-EJP174⟩
We study the convergence in distribution norms in the Central Limit Theorem for non identical distributed random variables that is \[ \varepsilon _{n}(f):={\mathbb{E} }\Big (f\Big (\frac 1{\sqrt n}\sum _{i=1}^{n}Z_{i}\Big )\Big )-{\mathbb{E} }\big (f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19b44959367bbea786f8c2b2f9c3adfd
https://hal-upec-upem.archives-ouvertes.fr/hal-01413548
https://hal-upec-upem.archives-ouvertes.fr/hal-01413548
Publikováno v:
Brazilian Journal of Probability and Statistics
Brazilian Journal of Probability and Statistics, 2020, 34 (2), pp.394-413. ⟨10.1214/18-BJPS420⟩
Brazilian Journal of Probability and Statistics, 34 (2
Braz. J. Probab. Stat. 34, no. 2 (2020), 394-413
This corresponds to the second section of https://arxiv.org/abs/1601.03301 New results added and .. 2017
Brazilian Journal of Probability and Statistics, 2020, 34 (2), pp.394-413. ⟨10.1214/18-BJPS420⟩
Brazilian Journal of Probability and Statistics, 34 (2
Braz. J. Probab. Stat. 34, no. 2 (2020), 394-413
This corresponds to the second section of https://arxiv.org/abs/1601.03301 New results added and .. 2017
In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear com
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bdf4a47cd30f777654d951ec916ef483
https://hal.science/hal-01612071
https://hal.science/hal-01612071
Publikováno v:
Stochastic processes and their applications, 129 (7
2017-41. This preprint corresponds to the third section of https://arxiv.org/abs/1601.03301. The main resu.. 2017
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Stochastic Processes and their Applications
Stochastic Processes and their Applications, 2019, 129 (7), pp.2341-2375. ⟨10.1016/j.spa.2018.07.009⟩
2017-41. This preprint corresponds to the third section of https://arxiv.org/abs/1601.03301. The main resu.. 2017
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Stochastic Processes and their Applications
Stochastic Processes and their Applications, 2019, 129 (7), pp.2341-2375. ⟨10.1016/j.spa.2018.07.009⟩
We provide a bound on a natural distance between finitely and infinitely supported elements of the unit sphere of $\ell^2(\mathbb{N}^*)$, the space of real valued sequences with finite $\ell^2$ norm. We use this bound to estimate the 2-Wasserstein di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb7416a3660acf58e550338e137b3f7e
https://hal.archives-ouvertes.fr/hal-01503225
https://hal.archives-ouvertes.fr/hal-01503225
Publikováno v:
2017-62. 2017
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, 2019, 147 (1), pp.205-214. ⟨10.1090/proc/14216⟩
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2022, 375 (10), pp.7209-7260. ⟨10.1090/tran/8742⟩
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, 2019, 147 (1), pp.205-214. ⟨10.1090/proc/14216⟩
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society, 2022, 375 (10), pp.7209-7260. ⟨10.1090/tran/8742⟩
We further investigate the relations between the large degree asymptotics of the number of real zeros of random trigonometric polynomials with dependent coefficients and the underlying correlation function. We consider trigonometric polynomials of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::170fae728fa7926e34111f7ff3e3bad5
https://hal.science/hal-01535749
https://hal.science/hal-01535749
Autor:
Guillaume Poly, Jürgen Angst
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. 〈10.1214/17-EJP77〉
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electronic Journal of Probability, 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. 〈10.1214/17-EJP77〉
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electronic Journal of Probability, 2017, 22 (article 59), pp.1-24. ⟨10.1214/17-EJP77⟩
Electron. J. Probab.
International audience; We introduce a new, weak Cramer condition on the characteristic function of a random vector which does not only hold for all continuous distributions but also for discrete (non-lattice) ones in a generic sense. We then prove t