Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Guillaume, Renton"'
Linear Sum Assignment Problem (LSAP) consists in mapping two sets of points of equal sizes according to a matrix encoding the cost of mapping each pair of points. The Linear Sum Assignment Problem with Edition (LSAPE) extends this problem by allowing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d6ab8f6d43c0f1eb7d6f02b782de9c8e
https://hal.archives-ouvertes.fr/hal-03768664
https://hal.archives-ouvertes.fr/hal-03768664
Autor:
Muhammet Balcilar, Sébastien Adam, Paul Honeine, Pierre Héroux, Benoit Gaüzère, Guillaume Renton
Publikováno v:
Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2021, ⟨10.1016/j.patrec.2021.09.020⟩
Pattern Recognition Letters, Elsevier, 2021, ⟨10.1016/j.patrec.2021.09.020⟩
International audience; In this paper, we propose a method to both extract and classify symbols in floorplan images. This method relies on the very recent developments of Graph Neural Networks (GNN). In the proposed approach, floorplan images are fir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77895fec2f0d104a1d5ec98f3f5a8f13
https://hal-normandie-univ.archives-ouvertes.fr/hal-03410511
https://hal-normandie-univ.archives-ouvertes.fr/hal-03410511
Autor:
Muhammet, Balcilar, Guillaume, Renton, Pierre, Héroux, Benoit, Gaüzère, Sébastien, Adam, Honeine, Paul
Publikováno v:
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020)
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Jul 2020, Vienna, Austria
Thirty-seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Jul 2020, Vienna, Austria
International audience; Convolutional Graph Neural Networks (Con-vGNNs) are designed either in the spectral domain or in the spatial domain. In this paper, we provide a theoretical framework to analyze these neural networks, by deriving some equivale
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c8e772ee4bb089c1e20f45dcfbe673a9
https://hal-normandie-univ.archives-ouvertes.fr/hal-03088374
https://hal-normandie-univ.archives-ouvertes.fr/hal-03088374
Publikováno v:
GREC@ICDAR
13th IAPR International Workshop on Graphics Recognition
13th IAPR International Workshop on Graphics Recognition, Sep 2019, Sydney, Australia
13th IAPR International Workshop on Graphics Recognition
13th IAPR International Workshop on Graphics Recognition, Sep 2019, Sydney, Australia
International audience; In this paper, we propose a new method to simultaneously detect and classify symbols in floorplan images. This method relies on the very recent developments of Graph Neural Networks (GNN). In the proposed approach, floorplan i
Autor:
Sébastien Adam, Yann Soullard, Thierry Paquet, Clément Chatelain, Christopher Kermorvant, Guillaume Renton
Publikováno v:
International Journal on Document Analysis and Recognition
International Journal on Document Analysis and Recognition, Springer Verlag, In press, ⟨10.1007/s10032-018-0304-3⟩
International Journal on Document Analysis and Recognition, Springer Verlag, In press, ⟨10.1007/s10032-018-0304-3⟩
We present a learning-based method for handwritten text line segmentation in document images. Our approach relies on a variant of deep fully convolutional networks (FCNs) with dilated convolutions. Dilated convolutions allow to never reduce the input
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::392a0c1570f7395e9f230888d20e40d9
https://hal.archives-ouvertes.fr/hal-01823604
https://hal.archives-ouvertes.fr/hal-01823604
Publikováno v:
WML@ICDAR
In this paper, we propose a learning based method for handwritten text line segmentation in document images. The originality of our approach rely on i) the use of X-height labeling of the textline, which provides a suitable text line representation f