Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Guillaume, Lecué"'
We obtain risk bounds for Empirical Risk Minimizers (ERM) and minmax Median-Of-Means (MOM) estimators based on loss functions that are both Lipschitz and convex. Results for the ERM are derived without assumptions on the outputs and under subgaussian
Externí odkaz:
http://arxiv.org/abs/1810.01090
Autor:
Guillaume, Lecué, Matthieu, Lerasle
We obtain estimation error rates for estimators obtained by aggregation of regularized median-of-means tests, following a construction of Le Cam. The results hold with exponentially large probability -- as in the gaussian framework with independent n
Externí odkaz:
http://arxiv.org/abs/1701.01961
Autor:
Jules Depersin, Guillaume Lecué
Publikováno v:
The Annals of Statistics. 50
Publikováno v:
SSRN Electronic Journal.
Autor:
Jules Depersin, Guillaume Lecué
We consider median of means (MOM) versions of the Stahel–Donoho outlyingness (SDO) [ 23, 66] and of the Median Absolute Deviation (MAD) [ 30] functions to construct subgaussian estimators of a mean vector under adversarial contamination and heavy-t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::654268c493a4daa4ce1337cde0cc5b0d
http://arxiv.org/abs/2101.09117
http://arxiv.org/abs/2101.09117
Autor:
Matthieu Lerasle, Guillaume Lecué
Publikováno v:
Annals of Statistics
Annals of Statistics, Institute of Mathematical Statistics, 2020, ⟨10.1214/19-AOS1828⟩
Ann. Statist. 48, no. 2 (2020), 906-931
Annals of Statistics, 2020, ⟨10.1214/19-AOS1828⟩
Annals of Statistics, Institute of Mathematical Statistics, 2020, ⟨10.1214/19-AOS1828⟩
Ann. Statist. 48, no. 2 (2020), 906-931
Annals of Statistics, 2020, ⟨10.1214/19-AOS1828⟩
We introduce new estimators for robust machine learning based on median-of-means (MOM) estimators of the mean of real valued random variables. These estimators achieve optimal rates of convergence under minimal assumptions on the dataset. The dataset
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::531780965edad7c90092e7ca46e091a2
https://hal.archives-ouvertes.fr/hal-01923036
https://hal.archives-ouvertes.fr/hal-01923036
Publikováno v:
Probability Theory and Related Fields
Probability Theory and Related Fields, Springer Verlag, 2019, ⟨10.1007/s00440-019-00931-3⟩
Probability Theory and Related Fields, 2019, ⟨10.1007/s00440-019-00931-3⟩
Probability Theory and Related Fields, Springer Verlag, 2019, ⟨10.1007/s00440-019-00931-3⟩
Probability Theory and Related Fields, 2019, ⟨10.1007/s00440-019-00931-3⟩
We obtain estimation and excess risk bounds for Empirical Risk Minimizers (ERM) and minmax Median-Of-Means (MOM) estimators based on loss functions that are both Lipschitz and convex. Results for the ERM are derived under weak assumptions on the outp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::969e1edfbd3e9355708ee4dff2475f5c
https://hal.archives-ouvertes.fr/hal-01923033
https://hal.archives-ouvertes.fr/hal-01923033
Publikováno v:
Machine Learning. 109:1667-1667
There is a mistake in one of the authors’ names (in both online and print versions of the article): it should be Timothee Mathieu instead of Timlothee Mathieu.
Publikováno v:
Electronic Journal of Statistics
Electronic Journal of Statistics, 2021, 15 (1), pp.1202-1227. ⟨10.1214/21-EJS1814⟩
Electronic Journal of Statistics, 2021, 15 (1), pp.1202-1227. ⟨10.1214/21-EJS1814⟩
Hyperparameters tuning and model selection are important steps in machine learning. Unfortunately, classical hyperparameter calibration and model selection procedures are sensitive to outliers and heavy-tailed data. In this work, we construct a selec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ff351a32b4f66f168446c84f6c17fe4
http://arxiv.org/abs/1812.02435
http://arxiv.org/abs/1812.02435
Publikováno v:
IEEE Transactions on Information Theory, 64(8), 5478. Institute of Electrical and Electronics Engineers Inc.
We consider the problem of recovering sparse vectors from underdetermined linear measurements via $\ell _{p}$ -constrained basis pursuit. Previous analyses of this problem based on generalized restricted isometry properties have suggested that two ph
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b8cf64f589ad385732b0a17b41c6276
https://dspace.library.uu.nl/handle/1874/418943
https://dspace.library.uu.nl/handle/1874/418943