Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Guilherme L. F. Silva"'
Publikováno v:
Communications in Mathematical Physics.
The KPZ fixed point is a 2d random field, conjectured to be the universal limiting fluctuation field for the height function of models in the KPZ universality class. Similarly, the periodic KPZ fixed point is a conjectured universal field for spatial
Autor:
Promit Ghosal, Guilherme L. F. Silva
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study multiplicative statistics for the eigenvalues of unitarily-invariant Hermitian random matrix models. We consider one-cut regular polynomial potentials and a large class of multiplicative statistics. We show that in the large matrix limit sev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b980c21c0d6185379f1e483608418951
Autor:
Lun Zhang, Guilherme L. F. Silva
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
For a pair of coupled rectangular random matrices we consider the squared singular values of their product, which form a determinantal point process. We show that the limiting mean distribution of these squared singular values is described by the sec
Publikováno v:
Advances in Mathematics. 349:246-315
We consider the type I multiple orthogonal polynomials (MOPs) ( A n , m , B n , m ) , deg A n , m ≤ n − 1 , deg B n , m ≤ m − 1 , and type II MOPs P n , m , deg P n , m = n + m , satisfying non-hermitian orthogonality with respect
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The relaxation time limit of the one-point distribution of the spatially periodic totally asymmetric simple exclusion process is expected to be the universal one point distribution for the models in the KPZ universality class in a periodic domain. Un
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4a45a93f5f8e3aff44d0c88a2f3bed4
http://arxiv.org/abs/2008.07024
http://arxiv.org/abs/2008.07024
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study a family of polynomials which are orthogonal with respect to the varying, highly oscillatory complex weight function $e^{ni\lambda z}$ on $[-1,1]$, where $\lambda$ is a positive parameter. This family of polynomials has appeared in the liter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b83fe078c2a80bd042d5b9f7472f8eb
http://arxiv.org/abs/1903.00960
http://arxiv.org/abs/1903.00960
Autor:
Pavel M. Bleher, Guilherme L. F. Silva
The normal matrix model with algebraic potential has gained a lot of attention recently, partially in virtue of its connection to several other topics as quadrature domains, inverse potential problems and the Laplacian growth. In this present paper t
Publikováno v:
Journal of Approximation Theory. 257:105453
Publikováno v:
Journal of Approximation Theory. 191:1-37
Curves in the complex plane that satisfy the S-property were first introduced by Stahl and they were further studied by Gonchar and Rakhmanov in the 1980s. Rakhmanov recently showed the existence of curves with the S-property in a harmonic external f