Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Guido Sweers"'
Autor:
Tymofiy Gerasimov, Guido Sweers
Publikováno v:
Electronic Journal of Differential Equations, Vol 2009, Iss 47,, Pp 1-54 (2009)
The operator $L=frac{partial ^{4}}{partial x^{4}} +frac{partial ^{4}}{partial y^{4}}$ appears in a model for the vertical displacement of a two-dimensional grid that consists of two perpendicular sets of elastic fibers or rods. We are interested in t
Externí odkaz:
https://doaj.org/article/c9280df8176b4e90a79d426f39b46ee4
Autor:
Guido Sweers
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 06, Pp 285-296 (2001)
It is known that the first eigenfunction of the clamped plate equation, $Delta^2 varphi = lambda varphi$ in $Omega$ with $varphi=frac{partial}{partial n}varphi=0$ on $partialOmega$, is not necessarily of fixed sign. In this article, we survey the rel
Externí odkaz:
https://doaj.org/article/6b500b31e83a404aaaa501b932d1855c
Autor:
Guido Sweers, Inka Schnieders
Publikováno v:
Journal of Differential Equations. 279:1-9
A priori estimates for semilinear higher order elliptic equations usually have to deal with the absence of a maximum principle. This note presents some regularity estimates for the polyharmonic Dirichlet problem that will make a distinction between t
Publikováno v:
Mathematical News / Mathematische Nachrichten
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, 292 (12), pp.2574-2601. ⟨10.1002/mana.201800092⟩
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, 292 (12), pp.2574-2601. ⟨10.1002/mana.201800092⟩
International audience; The hinged Kirchhoff plate model contains a fourth order elliptic differential equation complemented with a zeroeth and a second order boundary condition. On domains with boundaries having corners the strong setting is not wel
Autor:
Inka Schnieders, Guido Sweers
Publikováno v:
Positivity. 24:677-710
The Green function $$G_0(x,y)$$ for the biharmonic Dirichlet problem on a smooth domain $$\Omega $$, that is $$\Delta ^{2}u=f$$ in $$\Omega $$ with $$ u=u_{n}=0 $$ on $$\partial \Omega $$, can be written as the difference of a positive function, whic
Autor:
Guido Sweers, Bernd Kawohl
Publikováno v:
Communications on Pure & Applied Analysis. 18:2117-2131
A formula for smooth orbiforms originating from Euler can be adjusted to describe all sets of constant width in 2d. Moreover, the formula allows short proofs of some laborious approximation results for sets of constant width.
We study fundamental solutions of elliptic operators of order $2m\geq4$ with constant coefficients in large dimensions $n\ge 2m$, where their singularities become unbounded. For compositions of second order operators these can be chosen as convolutio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90aba27f8a45a3814d9e8a15e7af48ae
http://hdl.handle.net/11383/2132615
http://hdl.handle.net/11383/2132615
Autor:
Hans-Christoph Grunau, Guido Sweers
It is well known that in solving second order elliptic boundary value problems such as { − Δ u = λ u + f in Ω , u = 0 on ∂ Ω , https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072195/3650d8ca-ca16-404b-a448-9dd4
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b9456f3da1da918221a363447cb12359
https://doi.org/10.1201/9781003072195-15
https://doi.org/10.1201/9781003072195-15
Autor:
Inka Schnieders, Guido Sweers
Publikováno v:
Pure Appl. Anal. 2, no. 3 (2020), 685-702
Our main result is that for any bounded smooth domain [math] there exists a positive-weight function [math] and an interval [math] such that for [math] and [math] in [math] with [math] on [math] the following holds: if [math] is positive, then [math]
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c1fb9fb912d8dc8578df8770305e3bd
https://projecteuclid.org/euclid.paa/1611284470
https://projecteuclid.org/euclid.paa/1611284470
Autor:
Katerina Vassi, Guido Sweers
Publikováno v:
SIAM Journal on Mathematical Analysis. 50:1163-1174
The boundary value problem for the Kirchhoff--Love model of a hinged elastic plate with stress is as follows: $ \Delta^{2} u - \tau \Delta u = f $ in $\Omega\subset\mathbb{R}^2$, $u= \Delta u -(1- \sigma ) \kappa u_{\nu} =0$ on $\partial \Omega$ with