Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Guido Kings"'
In this paper we make a systematic study of certain motivic cohomology classes ("Rankin-Eisenstein classes") attached to the Rankin--Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eafa96f6cc62536b161512b4bd3be659
http://wrap.warwick.ac.uk/95041/19/WRAP-Rankin-Eisenstein-classes-modular-forms-Loeffler-2018.pdf
http://wrap.warwick.ac.uk/95041/19/WRAP-Rankin-Eisenstein-classes-modular-forms-Loeffler-2018.pdf
Autor:
Danny Scarponi, Guido Kings
Publikováno v:
Algebra Number Theory 13, no. 2 (2019), 501-511
We give a conceptual proof of the fact that the realisation of the degree zero part of the polylogarithm on abelian schemes in analytic Deligne cohomology can be described in terms of the Bismut-K\"ohler higher analytic torsion form of the Poincar\'e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9de566b924af994d34d12e8427f788dc
http://arxiv.org/abs/1803.00833
http://arxiv.org/abs/1803.00833
Autor:
Damian Rössler, Guido Kings
Publikováno v:
Geometry, Analysis and Probability
Geometry, Analysis and Probability, 310, Birkhäuser, pp.99-126, 2017, Progress in Mathematics, 978-3-319-49636-8
Progress in Mathematics ISBN: 9783319496368
Geometry, Analysis and Probability, 310, Birkhäuser, pp.99-126, 2017, Progress in Mathematics, 978-3-319-49636-8
Progress in Mathematics ISBN: 9783319496368
International audience; We give a simple axiomatic description of the degree 0 part of the polylogarithm on abelian schemes and show that its realisation in analytic Deligne cohomology can be described in terms of the Bismut-Köhler higher analytic t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3fe8316dd2029ca612fa651f83228b4e
https://hal.archives-ouvertes.fr/hal-01974667/document
https://hal.archives-ouvertes.fr/hal-01974667/document
Publikováno v:
Oberwolfach Reports. 11:1747-1800
The workshop brought together researchers from Europe, Japan and the US, who reported on various recent developments in algebraic number theory and related fields. Dominant topics were Shimura varieties, automorphic forms and Iwasawa theory.
Autor:
Guido Kings, Annette Huber
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 10:149-190
In this paper we define a p-adic analogue of the Borel regulator for the K-theory of p-adic fields. The van Est isomorphism in the construction of the classical Borel regulator is replaced by the Lazard isomorphism. The main result relates this p-adi
Publikováno v:
Compositio Mathematica. 147:235-262
Lazard showed in his seminal work "Groupes analytiques $p$-adiques" that for rational coefficients continuous group cohomology of $p$-adic Lie-groups is isomorphic to Lie-algebra cohomology. We refine this result in two directions: firstly we extend
Publikováno v:
Oberwolfach Reports. :1667-1730
Autor:
Guido Kings
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319450315
In this paper we prove that the motivic Eisenstein classes associated to polylogarithms of commutative group schemes can be p-adically interpolated in etale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2b2b74e9f9bd9871d90e09d9fda4024
https://doi.org/10.1007/978-3-319-45032-2_10
https://doi.org/10.1007/978-3-319-45032-2_10
Autor:
Annette Huber, Guido Kings
We generalize the definition of the polylogarithm classes to the case of commutative group schemes, both in the sheaf theoretic and the motivic setting. This generalizes and simplifies the existing cases.
36 pages
36 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e4463d2f7b1d20df61daefa32d15fb3
http://arxiv.org/abs/1505.04574
http://arxiv.org/abs/1505.04574
Publikováno v:
The Bloch–Kato Conjecture for the Riemann Zeta Function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::eb128e024df592b5f433f20d1de9a711
https://doi.org/10.1017/cbo9781316163757.013
https://doi.org/10.1017/cbo9781316163757.013