Zobrazeno 1 - 10
of 184
pro vyhledávání: '"Guesmia, Aissa"'
This article is intended to present a qualitative and numerical analysis of well-posedness and boundary stabilization problems of the well-known Korteweg-de Vries-Burgers equation. Assuming that the boundary control is of memory type, the history app
Externí odkaz:
http://arxiv.org/abs/2312.11950
Autor:
Guesmia, Aissa
In this paper, we consider two systems of type Rao-Nakra sandwich beam in the whole line R with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we
Externí odkaz:
http://arxiv.org/abs/2201.05881
Autor:
Guesmia, Aissa
The objective of the present paper is to investigate the decay of solutions for a laminated Timoshenko beam with interfacial slip in the whole space R subject to a thermal effect acting only on one component modelled by either Fourier or Cattaneo law
Externí odkaz:
http://arxiv.org/abs/2102.04336
Autor:
Guesmia, Aissa
In this paper, we study the Bresse system in a bounded domain with linear frictional dissipation working only on the veridical displacement. The longitudinal and shear angle displacements are free. Our first main result is to prove that, independentl
Externí odkaz:
http://arxiv.org/abs/2102.03191
Autor:
Guesmia, Aissa
The objective of this paper is to study the stability of a linear one-dimensional thermoelastic Bresse system in a bounded domain, where the coupling is given through the first component of the Bresse model with the heat conduction of Gurtin-Pipkin t
Externí odkaz:
http://arxiv.org/abs/2102.01731
Autor:
Guesmia, Aissa
The subject of this paper is to study the decay of solutions for two systems of laminated Timoshenko beams with interfacial slip in the whole space R subject to a thermal effect of type III acting only on one component. When the thermal effect is act
Externí odkaz:
http://arxiv.org/abs/2102.01735
Publikováno v:
Q. J. Math. 72 (2021), no. 4, 1495-1515
We study in this paper the well-posedness and stability of a linear system of a thermoelastic Cosserat medium with infinite memory, where the Cosserat medium is a continuum in which each point has the degrees of freedom of a rigid body.
Externí odkaz:
http://arxiv.org/abs/2102.00347
Publikováno v:
Appl. Math. Optim. 85 (2022), no. 2, Paper No. 20, 31 pp
We study in this paper the well-posedness and stability for two linear Schr\"odinger equations in $d$-dimensional open bounded domain under Dirichlet boundary conditions with an infinite memory. First, we establish the well-posedness in the sens of s
Externí odkaz:
http://arxiv.org/abs/2102.00331
Publikováno v:
Math. Methods Appl. Sci. 45 (2022), no. 8, 4408-4427
We study in this paper the well-posedness and stability of three structures with interfacial slip and two infinite memories effective on the transverse displacement and the rotation angle. We consider a large class of kernels and prove that the syste
Externí odkaz:
http://arxiv.org/abs/2102.00100
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.